Finite simple groups of Lie type over a field of the same characteristic with the same prime graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 168-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a finite group $G$, let $\pi(G)$ be the set of prime divisors of its order, and let $\omega(G)$ be the set of orders of its elements. Define on $\pi(G)$ a graph with the following adjacency relation: distinct vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in\omega(G)$. This graph is called the Grunberg–Kegel graph or prime graph of the group $G$ and is denoted by $GK(G)$. We prove that, if $G$ and $G_1$ are nonisomorphic finite simple groups of Lie type over fields of orders $q$ and $q_1$, respectively, of the same characteristic, then the graphs $GK(G)$ and $GK(G_1)$ coincide if and only if either $\{G,G_1\}=\{A_1(8),A_2(2)\}$ or $q=q_1$ and the pair $\{G,G_1\}$ coincides with one of the pairs $\{B_n(q),C_n(q)\}$ for odd $q$, $\{B_3(q),D_4(q)\}$, and $\{C_3(q),D_4(q)\}$.
Keywords: finite simple group of Lie type, prime graph, spectrum.
@article{TIMM_2014_20_2_a14,
     author = {M. R. Zinov'eva},
     title = {Finite simple groups of {Lie} type over a~field of the same characteristic with the same prime graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {168--183},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a14/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - Finite simple groups of Lie type over a field of the same characteristic with the same prime graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 168
EP  - 183
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a14/
LA  - ru
ID  - TIMM_2014_20_2_a14
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T Finite simple groups of Lie type over a field of the same characteristic with the same prime graph
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 168-183
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a14/
%G ru
%F TIMM_2014_20_2_a14
M. R. Zinov'eva. Finite simple groups of Lie type over a field of the same characteristic with the same prime graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 168-183. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a14/

[1] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/~alglog/18kt.pdf

[2] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[3] Zvezdina M. A., “O neabelevykh prostykh gruppakh s grafom prostykh chisel kak u znakoperemennoi gruppy”, Sib. mat. zhurn., 54:1 (2013), 65–76 | MR | Zbl

[4] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[5] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[6] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[7] Vasilev A. V., Vdovin E. P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[8] J. H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[10] Gerono G. C., “Note sur la résolution en nombres entiers et positifs de l'équation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[11] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian Electronic Math. Reports, 6 (2009), 1–12 | MR | Zbl