Justification of the asymptotics of solutions of the Navier--Stokes system for low Reynolds numbers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 161-167
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotics of a generalized solution of the steady-state Navier–Stokes system of equations in a bounded domain $\Omega$ of the three-dimensional space is studied under constraint on the generalized Reynolds number. By methods of functional analysis a theorem about approximation of the exact solution of the homogeneous boundary value problem by partial sums of the found series up to any degree of accuracy in the norm of space $C(\overline\Omega)$ is proved. For the non-steady-state Navier–Stokes system of equations asymptotic approximation in the norm of space $L_2(\Omega)$ is proved.
Keywords:
the Navier–Stokes system, asymptotic approximation.
@article{TIMM_2014_20_2_a13,
author = {S. V. Zakharov},
title = {Justification of the asymptotics of solutions of the {Navier--Stokes} system for low {Reynolds} numbers},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {161--167},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a13/}
}
TY - JOUR AU - S. V. Zakharov TI - Justification of the asymptotics of solutions of the Navier--Stokes system for low Reynolds numbers JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 161 EP - 167 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a13/ LA - ru ID - TIMM_2014_20_2_a13 ER -
%0 Journal Article %A S. V. Zakharov %T Justification of the asymptotics of solutions of the Navier--Stokes system for low Reynolds numbers %J Trudy Instituta matematiki i mehaniki %D 2014 %P 161-167 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a13/ %G ru %F TIMM_2014_20_2_a13
S. V. Zakharov. Justification of the asymptotics of solutions of the Navier--Stokes system for low Reynolds numbers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 161-167. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a13/