Functions of bounded mean oscillation and Hankel operators on compact abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizations of the notions of function of bounded mean oscillation and Hankel operator to the case of compact abelian groups with linearly ordered dual group is considered. Spaces of functions of bounded mean oscillation and of bounded mean oscillation of analytic type on such groups are described in terms of the boundedness of corresponding Hankel operators under the assumption that the dual group contains a minimal positive element.
Keywords: Hankel operator, bounded operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group.
@article{TIMM_2014_20_2_a11,
     author = {R. V. Dyba and A. R. Mirotin},
     title = {Functions of bounded mean oscillation and {Hankel} operators on compact abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/}
}
TY  - JOUR
AU  - R. V. Dyba
AU  - A. R. Mirotin
TI  - Functions of bounded mean oscillation and Hankel operators on compact abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 135
EP  - 144
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/
LA  - ru
ID  - TIMM_2014_20_2_a11
ER  - 
%0 Journal Article
%A R. V. Dyba
%A A. R. Mirotin
%T Functions of bounded mean oscillation and Hankel operators on compact abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 135-144
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/
%G ru
%F TIMM_2014_20_2_a11
R. V. Dyba; A. R. Mirotin. Functions of bounded mean oscillation and Hankel operators on compact abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/