@article{TIMM_2014_20_2_a11,
author = {R. V. Dyba and A. R. Mirotin},
title = {Functions of bounded mean oscillation and {Hankel} operators on compact abelian groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {135--144},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/}
}
TY - JOUR AU - R. V. Dyba AU - A. R. Mirotin TI - Functions of bounded mean oscillation and Hankel operators on compact abelian groups JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 135 EP - 144 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/ LA - ru ID - TIMM_2014_20_2_a11 ER -
R. V. Dyba; A. R. Mirotin. Functions of bounded mean oscillation and Hankel operators on compact abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/
[1] Dyba R. V., Mirotin A. R., “Svoistva operatorov Gankelya nad polozhitelnymi konusami lineino uporyadochennykh abelevykh grupp”, KhI Belorusskaya matematicheskaya konferentsiya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 5–9 noyabrya 2012 g.), Ch. 1, In-t matematiki NAN Belarusi, Minsk, 2012, 37–38
[2] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl
[3] Dyba R. V., “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 3(8), 57–60, (data obrascheniya: 22.07.2013) URL: http://pfmt.gsu.by | Zbl
[4] Yan Chaozong, Chen Xiaoman, Guo Kunyu, “Hankel operators and Hankel algebras”, Chin. Ann. Math. Ser. B, 19:1 (1998), 65–76 | MR | Zbl
[5] Nikolski N. K., Operators, functions, and systems: An easy reading, in 2 vol., v. I, Amer. Math. Soc., Providence, 2002, 461 pp. | MR | Zbl
[6] Peller B. V., Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 1028 pp.
[7] Mirotin A. R., “Fredgolmovy i spektralnye svoistva tëplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Mat. sb., 202:5 (2011), 101–116 | DOI | MR | Zbl
[8] Adukov V., “Wiener-Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 16:3 (1993), 305–332 | DOI | MR | Zbl
[9] Pontryagin L. S., Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp. | MR
[10] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972, 199 pp. | MR | Zbl
[11] Rudin W., Fourier analysis on groups, Intersciense Publishers, New York–London, 1962, 285 pp. | MR | Zbl
[12] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, Izd-vo GGU im. F. Skoriny, Gomel, 2008, 207 pp.
[13] Mirotin A. R., “On Hilbert transform in context of locally compact abelian groups”, Int. J. Pure Appl. Math., 51:4 (2009), 597–608 | MR
[14] Fefferman C., “Characterization of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl
[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl
[16] Nehari Z., “On bounded bilinear forms”, Ann. of Math. (2), 65:1 (1957), 153–162 | DOI | MR | Zbl
[17] Wang J., “Note on theorem of Nehari on Hankel forms”, Proc. Amer. Math. Soc., 24:1 (1970), 103–105 | DOI | MR | Zbl