Functions of bounded mean oscillation and Hankel operators on compact abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalizations of the notions of function of bounded mean oscillation and Hankel operator to the case of compact abelian groups with linearly ordered dual group is considered. Spaces of functions of bounded mean oscillation and of bounded mean oscillation of analytic type on such groups are described in terms of the boundedness of corresponding Hankel operators under the assumption that the dual group contains a minimal positive element.
Keywords:
Hankel operator, bounded operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group.
@article{TIMM_2014_20_2_a11,
author = {R. V. Dyba and A. R. Mirotin},
title = {Functions of bounded mean oscillation and {Hankel} operators on compact abelian groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {135--144},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/}
}
TY - JOUR AU - R. V. Dyba AU - A. R. Mirotin TI - Functions of bounded mean oscillation and Hankel operators on compact abelian groups JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 135 EP - 144 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/ LA - ru ID - TIMM_2014_20_2_a11 ER -
%0 Journal Article %A R. V. Dyba %A A. R. Mirotin %T Functions of bounded mean oscillation and Hankel operators on compact abelian groups %J Trudy Instituta matematiki i mehaniki %D 2014 %P 135-144 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/ %G ru %F TIMM_2014_20_2_a11
R. V. Dyba; A. R. Mirotin. Functions of bounded mean oscillation and Hankel operators on compact abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/