Functions of bounded mean oscillation and Hankel operators on compact abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Generalizations of the notions of function of bounded mean oscillation and Hankel operator to the case of compact abelian groups with linearly ordered dual group is considered. Spaces of functions of bounded mean oscillation and of bounded mean oscillation of analytic type on such groups are described in terms of the boundedness of corresponding Hankel operators under the assumption that the dual group contains a minimal positive element.
Keywords: Hankel operator, bounded operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group.
@article{TIMM_2014_20_2_a11,
     author = {R. V. Dyba and A. R. Mirotin},
     title = {Functions of bounded mean oscillation and {Hankel} operators on compact abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--144},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/}
}
TY  - JOUR
AU  - R. V. Dyba
AU  - A. R. Mirotin
TI  - Functions of bounded mean oscillation and Hankel operators on compact abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 135
EP  - 144
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/
LA  - ru
ID  - TIMM_2014_20_2_a11
ER  - 
%0 Journal Article
%A R. V. Dyba
%A A. R. Mirotin
%T Functions of bounded mean oscillation and Hankel operators on compact abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 135-144
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/
%G ru
%F TIMM_2014_20_2_a11
R. V. Dyba; A. R. Mirotin. Functions of bounded mean oscillation and Hankel operators on compact abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a11/

[1] Dyba R. V., Mirotin A. R., “Svoistva operatorov Gankelya nad polozhitelnymi konusami lineino uporyadochennykh abelevykh grupp”, KhI Belorusskaya matematicheskaya konferentsiya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 5–9 noyabrya 2012 g.), Ch. 1, In-t matematiki NAN Belarusi, Minsk, 2012, 37–38

[2] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl

[3] Dyba R. V., “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 3(8), 57–60, (data obrascheniya: 22.07.2013) URL: http://pfmt.gsu.by | Zbl

[4] Yan Chaozong, Chen Xiaoman, Guo Kunyu, “Hankel operators and Hankel algebras”, Chin. Ann. Math. Ser. B, 19:1 (1998), 65–76 | MR | Zbl

[5] Nikolski N. K., Operators, functions, and systems: An easy reading, in 2 vol., v. I, Amer. Math. Soc., Providence, 2002, 461 pp. | MR | Zbl

[6] Peller B. V., Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 1028 pp.

[7] Mirotin A. R., “Fredgolmovy i spektralnye svoistva tëplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Mat. sb., 202:5 (2011), 101–116 | DOI | MR | Zbl

[8] Adukov V., “Wiener-Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 16:3 (1993), 305–332 | DOI | MR | Zbl

[9] Pontryagin L. S., Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp. | MR

[10] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972, 199 pp. | MR | Zbl

[11] Rudin W., Fourier analysis on groups, Intersciense Publishers, New York–London, 1962, 285 pp. | MR | Zbl

[12] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, Izd-vo GGU im. F. Skoriny, Gomel, 2008, 207 pp.

[13] Mirotin A. R., “On Hilbert transform in context of locally compact abelian groups”, Int. J. Pure Appl. Math., 51:4 (2009), 597–608 | MR

[14] Fefferman C., “Characterization of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[16] Nehari Z., “On bounded bilinear forms”, Ann. of Math. (2), 65:1 (1957), 153–162 | DOI | MR | Zbl

[17] Wang J., “Note on theorem of Nehari on Hankel forms”, Proc. Amer. Math. Soc., 24:1 (1970), 103–105 | DOI | MR | Zbl