Nonabelian composition factors of a~finite group with arithmetic constraints to nonsolvable maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 122-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete description of nonabelian composition factors of a finite group in which any nonsolvable maximal subgroup has a primary index. We also complete V. A. Vedernikov's description of nonabelian composition factors of a finite group in which any nonsolvable maximal subgroup is a Hall subgroup.
Keywords: finite group, maximal subgroup, solvable subgroup, Hall subgroup, composition factor, primary index.
@article{TIMM_2014_20_2_a10,
     author = {E. N. Demina and N. V. Maslova},
     title = {Nonabelian composition factors of a~finite group with arithmetic constraints to nonsolvable maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a10/}
}
TY  - JOUR
AU  - E. N. Demina
AU  - N. V. Maslova
TI  - Nonabelian composition factors of a~finite group with arithmetic constraints to nonsolvable maximal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 122
EP  - 134
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a10/
LA  - ru
ID  - TIMM_2014_20_2_a10
ER  - 
%0 Journal Article
%A E. N. Demina
%A N. V. Maslova
%T Nonabelian composition factors of a~finite group with arithmetic constraints to nonsolvable maximal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 122-134
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a10/
%G ru
%F TIMM_2014_20_2_a10
E. N. Demina; N. V. Maslova. Nonabelian composition factors of a~finite group with arithmetic constraints to nonsolvable maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 122-134. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a10/