Optimal control with connected initial and terminal conditions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 13-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem with linear dynamics is considered on a fixed time interval. The ends of the interval correspond to terminal spaces, and a finite-dimensional optimization problem is formulated on the Cartesian product of these spaces. Two components of the solution of this problem define the initial and terminal conditions for the controlled dynamics. The dynamics in the optimal control problem is treated as an equality constraint. The controls are assumed to be bounded in the norm of $\mathrm L_2$. A saddle-point method is proposed to solve the problem. The method is based on finding saddle points of the Lagrangian. The weak convergence of the method in controls and its strong convergence in state trajectories, conjugate trajectories, and terminal variables are proved.
Keywords: terminal control, boundary value problems, convex programming, Lagrange function, solution methods
Mots-clés : convergence.
@article{TIMM_2014_20_2_a1,
     author = {A. S. Antipin and E. V. Khoroshilova},
     title = {Optimal control with connected initial and terminal conditions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--28},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - E. V. Khoroshilova
TI  - Optimal control with connected initial and terminal conditions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 13
EP  - 28
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/
LA  - ru
ID  - TIMM_2014_20_2_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%A E. V. Khoroshilova
%T Optimal control with connected initial and terminal conditions
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 13-28
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/
%G ru
%F TIMM_2014_20_2_a1
A. S. Antipin; E. V. Khoroshilova. Optimal control with connected initial and terminal conditions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 13-28. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/

[1] Antipin A. S., Khoroshilova E. V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 7–25

[2] Vasilev F. P., Khoroshilova E. V., “Ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2010, no. 3, 18–23

[3] Vasilev F. P., Khoroshilova E. V., Antipin A. S., “Regulyarizovannyi ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 27–37

[4] Khoroshilova E. V., “Ekstragradientnyi metod v zadache optimalnogo upravleniya s terminalnymi ogranicheniyami”, Avtomatika i telemekhanika, 2012, no. 3, 117–133

[5] Khoroshilova Elena V., “Extragradient-type method for optimal control problem with linear constraints and convex objective function”, Optim. Lett., 7:6 (2013), 1193–1214 | DOI | MR | Zbl

[6] Antipin A. S., “Metod modifitsirovannoi funktsii Lagranzha dlya zadach optimalnogo upravleniya so svobodnym pravym kontsom”, Izv. Irkut. gos. un-ta, 4:2 (2011), 27–44 | Zbl

[7] Vasilev F. P., Metody optimizatsii, Kn. 1, 2, MTsNMO, M., 2011, 1056 pp.

[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gos. izd-vo tekhn.-teoret. lit., M., 1957, 552 pp. | MR

[9] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i mat. metody, 12:6 (1976), 747–756

[10] Antipin A. S., “Ob odnom metode otyskaniya sedlovoi tochki modifitsirovannoi funktsii Lagranzha”, Ekonomika i mat. metody, 13:3 (1977), 560–565 | MR | Zbl