Optimal control with connected initial and terminal conditions
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 13-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An optimal control problem with linear dynamics is considered on a fixed time interval. The ends of the interval correspond to terminal spaces, and a finite-dimensional optimization problem is formulated on the Cartesian product of these spaces. Two components of the solution of this problem define the initial and terminal conditions for the controlled dynamics. The dynamics in the optimal control problem is treated as an equality constraint. The controls are assumed to be bounded in the norm of $\mathrm L_2$. A saddle-point method is proposed to solve the problem. The method is based on finding saddle points of the Lagrangian. The weak convergence of the method in controls and its strong convergence in state trajectories, conjugate trajectories, and terminal variables are proved.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
terminal control, boundary value problems, convex programming, Lagrange function, solution methods
Mots-clés : convergence.
                    
                  
                
                
                Mots-clés : convergence.
@article{TIMM_2014_20_2_a1,
     author = {A. S. Antipin and E. V. Khoroshilova},
     title = {Optimal control with connected initial and terminal conditions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. S. Antipin AU - E. V. Khoroshilova TI - Optimal control with connected initial and terminal conditions JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 13 EP - 28 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/ LA - ru ID - TIMM_2014_20_2_a1 ER -
A. S. Antipin; E. V. Khoroshilova. Optimal control with connected initial and terminal conditions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 13-28. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/
