Mots-clés : convergence.
@article{TIMM_2014_20_2_a1,
author = {A. S. Antipin and E. V. Khoroshilova},
title = {Optimal control with connected initial and terminal conditions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {13--28},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/}
}
A. S. Antipin; E. V. Khoroshilova. Optimal control with connected initial and terminal conditions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 13-28. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a1/
[1] Antipin A. S., Khoroshilova E. V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 7–25
[2] Vasilev F. P., Khoroshilova E. V., “Ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2010, no. 3, 18–23
[3] Vasilev F. P., Khoroshilova E. V., Antipin A. S., “Regulyarizovannyi ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 27–37
[4] Khoroshilova E. V., “Ekstragradientnyi metod v zadache optimalnogo upravleniya s terminalnymi ogranicheniyami”, Avtomatika i telemekhanika, 2012, no. 3, 117–133
[5] Khoroshilova Elena V., “Extragradient-type method for optimal control problem with linear constraints and convex objective function”, Optim. Lett., 7:6 (2013), 1193–1214 | DOI | MR | Zbl
[6] Antipin A. S., “Metod modifitsirovannoi funktsii Lagranzha dlya zadach optimalnogo upravleniya so svobodnym pravym kontsom”, Izv. Irkut. gos. un-ta, 4:2 (2011), 27–44 | Zbl
[7] Vasilev F. P., Metody optimizatsii, Kn. 1, 2, MTsNMO, M., 2011, 1056 pp.
[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gos. izd-vo tekhn.-teoret. lit., M., 1957, 552 pp. | MR
[9] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i mat. metody, 12:6 (1976), 747–756
[10] Antipin A. S., “Ob odnom metode otyskaniya sedlovoi tochki modifitsirovannoi funktsii Lagranzha”, Ekonomika i mat. metody, 13:3 (1977), 560–565 | MR | Zbl