Asymptotics of the optimal time in a time-optimal problem with two small parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 92-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A time-optimal problem of control of a small-mass point by a force of bounded magnitude in a nonresisting medium is considered. An asymptotic expansion of the optimal time and optimal control is constructed with respect to two independent small parameters: the mass of the point and the perturbation of the initial conditions. It is shown that the asymptotics of the optimal time in this problem is complicated even for cases of general position.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2014_20_1_a8,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of the optimal time in a~time-optimal problem with two small parameters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {92--99},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a8/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of the optimal time in a time-optimal problem with two small parameters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 92
EP  - 99
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a8/
LA  - ru
ID  - TIMM_2014_20_1_a8
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of the optimal time in a time-optimal problem with two small parameters
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 92-99
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a8/
%G ru
%F TIMM_2014_20_1_a8
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of the optimal time in a time-optimal problem with two small parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 92-99. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a8/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[4] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 239 pp.

[5] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast models”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[6] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20, VINITI, M., 1982, 3–77 | MR | Zbl

[7] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR

[8] Gichev T. R., Donchev A. L., “Skhodimost resheniya lineinoi singulyarno vozmuschennoi zadachi bystrodeistviya”, Prikl. matematika i mekhanika, 43:3 (1979), 466–474 | MR | Zbl

[9] Kalinin A. I., Semenov K. V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 44:3 (2004), 432–443 | MR | Zbl

[10] Danilin A. R., Ilin A. M., “Asimptotika resheniya zadachi o bystrodeistvii pri vozmuschenii nachalnykh uslovii”, Tekhn. kibernetika, 1994, no. 3, 96–103 | MR | Zbl

[11] Danilin A. R., Ilin A. M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[12] Danilin A. R., Kovrizhnykh O. O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | MR | Zbl

[13] Danilin A. R., Kovrizhnykh O. O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Vestn. Chelyab. gos. un-ta, 2011, no. 27, Matematika, mekhanika, informatika, vyp. 14, 46–60

[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR

[15] Danilin A. R., Kovrizhnykh O. O., “Asimptoticheskoe predstavlenie resheniya singulyarno vozmuschennoi lineinoi zadachi bystrodeistviya”, Tr. Instituta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 67–79