@article{TIMM_2014_20_1_a7,
author = {D. V. Gorbachev},
title = {An estimate of an optimal argument in the sharp multidimensional {Jackson{\textendash}Stechkin} $L_2$-inequality},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {83--91},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/}
}
TY - JOUR AU - D. V. Gorbachev TI - An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin $L_2$-inequality JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 83 EP - 91 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/ LA - ru ID - TIMM_2014_20_1_a7 ER -
D. V. Gorbachev. An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin $L_2$-inequality. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/
[1] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L_2(\mathbb R^m$)”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, 1998, 183–198 | Zbl
[2] Berdysheva E. E., “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Mat. zametki, 66:3 (1999), 336–350 | DOI | MR | Zbl
[3] Vasilev S. N., “Neravenstvo Dzheksona v $L_2(\mathbb T^N)$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 102–110
[4] Vasilev S. N., “Neravenstvo Dzheksona v $L_2(\mathbb R^N)$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 93–99
[5] Gorbachev D. V., “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Mat. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl
[6] Gorbachev D. V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, 2-e izd., pererab. i dop., “Grif i K”, Tula, 2005, 192 pp.
[7] Gorbachev D. V., Strankovskii S. A., “Odna ekstremalnaya zadacha dlya chetnykh polozhitelno opredelennykh tselykh funktsii eksponentsialnogo tipa”, Mat. zametki, 80:5 (2006), 712–717 | DOI | MR | Zbl
[8] Ivanov A. V., “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 29–58
[9] Ivanov V. I., “Tochnye $L_2$-neravenstva Dzheksona–Chernykh–Yudina v teorii priblizhenii”, Izv. TulGU. Estestvennye nauki, 2012, no. 3, 19–28
[10] Ivanov A. V., Ivanov V. I., “Teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 88:1 (2010), 148–151 | DOI | MR | Zbl
[11] Ivanov A. V., Ivanov V. I., “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 180–192
[12] Ivanov A. V., Ivanov V. I., “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | DOI | Zbl
[13] Ivanov A. V., Ivanov V. I., Khue Kha Tkhi Min, “Obobschennaya konstanta Dzheksona v prostranstve $L_2(\mathbb R^d)$ s vesom Danklya”, Izv. TulGU. Ser. Estestvennye nauki, 2013, no. 3, 74–90
[14] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl
[15] Moskovskii A. V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Ser. Matematika, 3:1 (1997), 44–70 | MR
[16] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl
[17] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Mat. zametki, 2:5 (1967), 513–522 | MR | Zbl
[18] Yudin V. A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl
[19] Yudin V. A., “Dve ekstremalnye zadachi dlya trigonometricheskikh polinomov”, Mat. sb., 187:11 (1996), 145–160 | DOI | MR | Zbl
[20] Bray W. O., Growth and integrability of Fourier transforms on Euclidean space, 2013, 17 pp., arXiv: 1308.2268
[21] Bray W. O., Pinsky M. A., “Growth properties of Fourier transforms via moduli of continuity”, J. Func. Anal., 255 (2009), 2265–2285 | DOI | MR
[22] Chernykh N. I., Arestov V. V., “On the $L_2$-approximation of periodic functions by trigonometric polinomials”, Approximation and functions spaces, Proc. Inter. Conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR
[23] Gorbachev D., Tikhonov S., “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164 (2012), 1283–1312 | DOI | MR | Zbl