An estimate of an optimal argument in the sharp multidimensional Jackson--Stechkin $L_2$-inequality
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 83-91

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of an optimal argument in the sharp Jackson–Stechkin inequality in the space $L_2(\mathbb R^n)$ is proved in the case of a generalized modulus of continuity; its special case is the classical modulus of continuity. Similar statements hold for the torus $\mathbb T^n$. The obtained results agree with Chernykh's classical one-dimensional theorems and refine some results by S. N. Vasil'ev, A. I. Kozko, and N. I. Rozhdestvenskii.
Keywords: best approximation, generalized modulus of continuity, sharp multidimensional Jackson–Stechkin inequality.
@article{TIMM_2014_20_1_a7,
     author = {D. V. Gorbachev},
     title = {An estimate of an optimal argument in the sharp multidimensional {Jackson--Stechkin} $L_2$-inequality},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - An estimate of an optimal argument in the sharp multidimensional Jackson--Stechkin $L_2$-inequality
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 83
EP  - 91
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/
LA  - ru
ID  - TIMM_2014_20_1_a7
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T An estimate of an optimal argument in the sharp multidimensional Jackson--Stechkin $L_2$-inequality
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 83-91
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/
%G ru
%F TIMM_2014_20_1_a7
D. V. Gorbachev. An estimate of an optimal argument in the sharp multidimensional Jackson--Stechkin $L_2$-inequality. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a7/