On the stability of a procedure for solving a minimax control problem for a positional functional
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 68-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a minimax feedback control problem for a linear dynamic system with a positional quality criterion, which is the norm of the family of deviations of the motion from given target points at given times. The problem is formalized as a positional differential game. A procedure for calculating the value of the game based on the backward construction of upper convex hulls of auxiliary program functions is studied. We also study a method of generating a minimax control law based on this procedure and on the extremal shift principle. The stability of the proposed resolving constructions with respect to computational and informational noises is proved.
Keywords: optimal control, differential games, stability.
@article{TIMM_2014_20_1_a6,
     author = {M. I. Gomoyunov and N. Yu. Lukoyanov},
     title = {On the stability of a~procedure for solving a~minimax control problem for a~positional functional},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {68--82},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a6/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - N. Yu. Lukoyanov
TI  - On the stability of a procedure for solving a minimax control problem for a positional functional
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 68
EP  - 82
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a6/
LA  - ru
ID  - TIMM_2014_20_1_a6
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A N. Yu. Lukoyanov
%T On the stability of a procedure for solving a minimax control problem for a positional functional
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 68-82
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a6/
%G ru
%F TIMM_2014_20_1_a6
M. I. Gomoyunov; N. Yu. Lukoyanov. On the stability of a procedure for solving a minimax control problem for a positional functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 68-82. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a6/

[1] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp. | MR

[2] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhäuser, Berlin etc., 1995, 322 pp. | MR

[3] Lukoyanov N. Yu., “K voprosu vychisleniya tseny differentsialnoi igry dlya pozitsionnogo funktsionala”, Prikl. matematika i mekhanika, 62:2 (1998), 188–198 | MR | Zbl

[4] Kornev D. V., “O chislennom reshenii pozitsionnykh differentsialnykh igr s neterminalnoi platoi”, Avtomatika i telemekhanika, 2012, no. 11, 60–75 | Zbl

[5] Balashov M. V., “O $P$-svoistve vypuklykh kompaktov”, Mat. zametki, 71:3 (2002), 323–333 | DOI | MR | Zbl

[6] Balashov M. V., Bogdanov I. I., “O nekotorykh svoistvakh $P$-mnozhestv i svoistve zazhatosti v vypuklykh kompaktakh”, Mat. zametki, 84:4 (2008), 496–505 | DOI | MR | Zbl

[7] Shirokov M. E., “O silnom $CE$-svoistve vypuklykh mnozhestv”, Mat. zametki, 82:3 (2007), 441–458 | DOI | MR | Zbl

[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl