Mots-clés : interpolation, convergence.
@article{TIMM_2014_20_1_a5,
author = {Yu. S. Volkov and Yu. N. Subbotin},
title = {50~years to {Schoenberg's} problem on the convergence of spline interpolation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {52--67},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a5/}
}
TY - JOUR AU - Yu. S. Volkov AU - Yu. N. Subbotin TI - 50 years to Schoenberg's problem on the convergence of spline interpolation JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 52 EP - 67 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a5/ LA - ru ID - TIMM_2014_20_1_a5 ER -
Yu. S. Volkov; Yu. N. Subbotin. 50 years to Schoenberg's problem on the convergence of spline interpolation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 52-67. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a5/
[1] Butzer P. L., Korevaar J. (Eds.), On approximation theory, Proc. conf. (Oberwolfach, 1963), ISNM, 5, Birkhäuser, Basel–Stuttgart, 1964, 261 pp.
[2] Butzer P. L., “A retrospective on 60 years of approximation theory and associated fields”, J. Approxim. Theory, 160:1–2 (2009), 3–18 | DOI | Zbl
[3] Schoenberg I. J., “Contributions to the problem of approximation of equidistant data by analytic functions. Part A: On the problem of smoothing or graduation. A first class of analytic approximation formulae”, Quart. Appl. Math., 4 (1946), 45–99 | Zbl
[4] Schumaker L. L., Spline functions: basic theory, Wiley, New York, 1981, 553 pp. | Zbl
[5] Holladay J. C., “A smoothest curve approximation”, Math. Tables Aids Comput., 11:60 (1957), 233–243 | DOI | Zbl
[6] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Academic Press, New York, 1967, 284 pp. ; Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp. | Zbl
[7] de Boor C., A practical guide to splines, Springer, New York, 1978, 392 pp. ; de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i Svyaz, M., 1985, 304 pp. | MR | Zbl | MR
[8] Schoenberg I. J., “Spline interpolation and the higher derivatives”, Proc. Nat. Acad. Sci. USA, 51:1 (1964), 24–28 | DOI | MR | Zbl
[9] Schoenberg I. J., “Spline interpolation and the higher derivatives”, Number Theory and Analysis, Plenum, New York, 1969, 279–295 | MR
[10] Walsh J. L., Ahlberg J. H., Nilson E. N., “Best approximation properties of the spline fit”, J. Math. Mech., 11:2 (1962), 225–234 | MR | Zbl
[11] Ahlberg J. H., Nilson E. N., “Convergence properties of the spline fit”, J. Soc. Indust. Appl. Math., 11:1 (1963), 95–104 | DOI | MR | Zbl
[12] Birkhoff G., de Boor C., “Error bounds for spline interpolation”, J. Math. Mech., 13:5 (1964), 827–835 | MR | Zbl
[13] Ahlberg J. H., Nilson E. N., Walsh J. L., “Fundamental properties of generalized splines”, Proc. Nat. Acad. Sci. USA, 52:6 (1964), 1412–1419 | DOI | MR | Zbl
[14] Ahlberg J. H., Nilson E. N., Walsh J. L., “Convergence properties of generalized splines”, Proc. Nat. Acad. Sci. USA, 54:2 (1965), 344–350 | DOI | MR | Zbl
[15] Ahlberg J. H., Nilson E. N., Walsh J. L., “Best approximation and convergence properties of higher-order spline approximations”, J. Math. Mech., 14:2 (1965), 231–243 | MR | Zbl
[16] Sharma A., Meir A., “Degree of approximation of spline interpolation”, J. Math. Mech., 15:5 (1966), 759–767 | MR | Zbl
[17] Nord S., “Approximation properties of the spline fit”, BIT, 7:2 (1967), 132–144 | DOI | MR | Zbl
[18] Stechkin S. B., Subbotin Yu. N., “Dobavleniya”: Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 270–309 | MR
[19] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl
[20] Privalov Al. A., “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Mat. zametki, 25:5 (1979), 681–700 | MR | Zbl
[21] Subbotin Yu. N., “O kusochno-polinomialnoi interpolyatsii”, Mat. zametki, 1:1 (1967), 63–70 | MR | Zbl
[22] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78, 1965, 24–42 ; Subbotin Yu. N., “On the relations between finite differences and the corresponding derivatives”, Proc. Steklov Inst. Math., 78, 1967, 23–42 | MR | Zbl
[23] Hall C. A., “On error bounds for spline interpolation”, J. Approxim. Theory, 1:2 (1968), 209–218 | DOI | MR | Zbl
[24] Cheney E. W., Schurer F., “A note on the operators arising in spline approximation”, J. Approxim. Theory, 1:1 (1968), 94–102 | DOI | MR | Zbl
[25] Meir A., Sharma A., “On uniform approximation by cubic splines”, J. Approxim. Theory, 2:3 (1969), 270–274 | DOI | MR | Zbl
[26] Cheney E. W., Schurer F., “Convergence of cubic spline interpolants”, J. Approxim. Theory, 3:1 (1970), 114–116 | DOI | MR | Zbl
[27] Zavyalov Yu. S., “Interpolirovanie kubicheskimi mnogozvennikami”, Vychisl. sistemy, 38, IM SO AN SSSR, Novosibirsk, 1970, 23–73
[28] Hall C. A., “Uniform convergence of cubic spline interpolants”, J. Approxim. Theory, 7:1 (1973), 71–75 | DOI | MR | Zbl
[29] Marsden M. J., “Cubic spline interpolation of continuous functions”, J. Approxim. Theory, 10:2 (1974), 103–111 | DOI | MR | Zbl
[30] Lyche T., Schumaker L. L., “On the convergence of cubic interpolating splines”, Spline functions and approximation theory, Proc. Sympos. (Univ. Alberta, Edmonton, 1972), ISNM, 21, eds. A. Meir, A. Sharma, Birkhäuser, Basel, 1973, 169–189 | MR
[31] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Tr. MIAN SSSR, 138, 1975, 71–93 ; Zmatrakov N. L., “Convergence of an interpolation process for parabolic and cubic splines”, Proc. Steklov Inst. Math., 138, 1977, 75–99 | MR | Zbl | Zbl
[32] de Boor C., “On cubic spline functions that vanish at all knots”, Adv. Math., 20:1 (1976), 1–17 | DOI | MR | Zbl
[33] Subbotin Yu. N., “Variatsii na temu splainov”, Fundament. i prikl. matematika, 3:4 (1997), 1043–1058 | MR | Zbl
[34] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[35] Miroshnichenko V. L., “O raskhodimosti interpolyatsionnykh kubicheskikh splainov v prostranstve nepreryvnykh funktsii”, Metody splain-funktsii, Vychisl. sistemy, 81, IM SO AN SSSR, Novosibirsk, 1979, 3–11 | MR
[36] Zmatrakov N. L., Subbotin Yu. N., “Kratnye interpolyatsionnye splainy stepeni $2k+1$ defekta $k$”, Tr. MIAN SSSR, 164, 1983, 75–99 ; Zmatrakov N. L., Subbotin Yu. N., “Multiple interpolation splines of degree $2k+1$ and defect $k$”, Proc. Steklov Inst. Math., 164, 1985, 83–111 | MR | Zbl | Zbl
[37] Marsden M. J., “Quadratic spline interpolation”, Bull. Amer. Math. Soc., 80:5 (1974), 903–906 | DOI | MR | Zbl
[38] Kammerer W. J., Reddien G. W., Varga R. S., “Quadratic interpolatory splines”, Numer. Math., 22:4 (1974), 241–259 | DOI | MR | Zbl
[39] Marsden M. J., “Operator norm bounds and error bounds for quadratic spline interpolation”, Approximation theory, Papers 6th Semester, Banach Internat. Math. Center, 1975, v. 4, ed. Z. Ciesielski, PWN, Warszawa, 1979, 159–175 | MR
[40] Zmatrakov N. L., “Ravnomernaya skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov”, Metody splain-funktsii, Vychisl. sistemy, 72, IM SO AN SSSR, Novosibirsk, 1977, 10–29 | MR
[41] Zmatrakov N. L., “Neobkhodimoe uslovie skhodimosti interpolyatsionnykh parabolicheskikh i kubicheskikh splainov”, Mat. zametki, 19:2 (1976), 165–178 | MR | Zbl
[42] Gfrerer H., “Uniform convergence of interpolation by cubic splines”, Computing, 29:4 (1982), 361–364 | DOI | MR | Zbl
[43] Jia R.-Q., “On a conjecture of C. A. Micchelli concerning cubic spline interpolation at a biinfinite knot sequence”, J. Approxim. Theory, 38:3 (1983), 284–292 | DOI | MR | Zbl
[44] Zmatrakov N. L., “Skhodimost interpolyatsionnykh kubicheskikh splainov pri ogranicheniyakh na neskolko sosednikh shagov setki”, Priblizhenie funktsii polinomami i splainami, IMM AN SSSR, Sverdlovsk, 1985, 83–94 | MR
[45] Zmatrakov N. L., “Skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov v metrikakh $L_p$ ($1\le p\le\infty$)”, Mat. zametki, 30:1 (1981), 83–99 | MR | Zbl
[46] Zmatrakov N. L., “Raskhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov v metrikakh $L_p$”, Mat. zametki, 31:5 (1982), 707–722 | MR | Zbl
[47] Miroshnichenko V. L., “Ob interpolirovanii kubicheskimi splainami”, Vychisl. sistemy, 56, IM SO AN SSSR, Novosibirsk, 1973, 18–22
[48] Lucas T. R., “Error bounds for interpolating cubic splines under various end conditions”, SIAM J. Numer. Anal., 11:3 (1974), 569–584 | DOI | MR | Zbl
[49] Hall C. A., Meyer W. W., “Optimal error bounds for cubic spline interpolation”, J. Approxim. Theory, 16:2 (1976), 105–122 | DOI | MR | Zbl
[50] Miroshnichenko V. L., “O pogreshnosti priblizheniya kubicheskimi interpolyatsionnymi splainami. I”, Metody splain-funktsii, Vychisl. sistemy, 93, IM SO AN SSSR, Novosibirsk, 1982, 3–29 | MR
[51] Zhanlav T., “Nekotorye otsenki priblizheniya vtorykh proizvodnykh s pomoschyu kubicheskikh interpolyatsionnykh splainov”, Metody splain-funktsii, Vychisl. sistemy, 81, IM SO AN SSSR, Novosibirsk, 1979, 12–20 | MR
[52] Miroshnichenko V. L., “Exact error bounds for the periodic cubic and parabolic spline interpolation on the uniform mesh”, Math. Balkanica, 2:2–3 (1988), 210–221 | MR | Zbl
[53] Weng T., “Optimal error bounds for derivatives of cubic interpolating splines with equidistant nodes”, Math. Numer. Sinica, 2:1 (1980), 24–34 (Chinese) | MR | Zbl
[54] Dubeau F., Savoie J., “Optimal error bounds for quadratic spline interpolation”, J. Math. Anal. Appl., 198:1 (1996), 49–63 | DOI | MR | Zbl
[55] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.–L., 1950, 359 pp.; Gantmacher F. R., Krein M. G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Amer. Math. Soc., Providence, 2002, 310 pp. | MR
[56] Karlin S., Total positivity, v. 1, Stanford University Press, Stanford, 1968, 576 pp. | MR
[57] de Boor C., “On the convergence of odd-degree spline interpolation”, J. Approxim. Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl
[58] de Boor C., “On a max-norm bound for the least-squares spline approximant”, Approximation and function spaces, Proc. intern. conf. (Gdánsk, 1979), ed. Z. Ciesielski, North-Holland, Amsterdam–New York, 1981, 163–175 | MR
[59] Volkov Yu. S., “Interpolyatsiya splainami pyatoi stepeni”, Tr. mezhdunar. konf. po vychisl. matemaktike MKVM-2004, Ch. I, eds. G. A. Mikhailov, V. P. Ilin, Yu. M. Laevskii, Izd-vo IVMiMG SO RAN, Novosibirsk, 2004, 92–97
[60] Volkov Yu. S., “Vpolne neotritsatelnye matritsy v metodakh postroeniya interpolyatsionnykh splainov nechetnoi stepeni”, Mat. trudy, 7:2 (2004), 3–34 ; Volkov Yu. S., “Totally positive matrices in the methods of constructing interpolation splines of odd degree”, Siberian Adv. Math., 15:4 (2005), 96–125 | MR | Zbl | MR
[61] de Boor C., “The quasi-interpolant as a tool in elementary polynomial spline theory”, Approximation theory, Proc. Internat. Sympos. (Austin, 1973), ed. G. G. Lorentz, Academic Press, New York, 1973, 269–276 | MR
[62] de Boor C., “On bounding spline interpolation”, J. Approxim. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl
[63] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychisl. sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56 | MR
[64] de Boor C., “A bound on the $L_\infty$-norm of $L_2$-approximation by splines in terms of a global mesh ratio”, Math. Comput., 30:136 (1976), 765–771 | MR | Zbl
[65] de Boor C., “Odd-degree spline interpolation at a biinfinite knot sequence”, Approximation theory, Proc. intern. conf. (Bonn, 1976), eds. R. Schaback, K. Scherer, Springer, Heidelberg, 1976, 30–53 | DOI | MR
[66] Friedland S., Micchelli C. A., “Bounds on the solutions of difference equations and spline interpolation at knots”, Linear Algebra Appl., 20:3 (1978), 219–251 | DOI | MR | Zbl
[67] Volkov Yu. S., Ravnomernaya skhodimost proizvodnykh interpolyatsionnykh splainov nechetnoi stepeni, Preprint No 62, IM SO AN SSSR, Novosibirsk, 1984, 10 pp.
[68] Shadrin A. Yu., “O skorosti skhodimosti interpolyatsionnykh splainov, zadannykh na neravnomernykh setkakh”, Dokl. AN SSSR, 307:6 (1989), 1331–1334 ; Shadrin A. Yu., “The rate of convergence of interpolation splines given on nonuniform grids”, Soviet Math. Dokl., 40:1 (1990), 266–268 | MR | Zbl
[69] Shadrin A. Yu., “O priblizhenii funktsii interpolyatsionnymi splainami, zadannymi na neravnomernykh setkakh”, Mat. sbornik, 181:9 (1990), 1236–1255 ; Shadrin A. Yu., “On the approximation of functions by interpolating splines defined on nonuniform nets”, Math. USSR-Sb., 71:1 (1992), 81–99 | MR | Zbl | DOI | Zbl
[70] Shadrin A. Yu., “Convergence of quintic spline interpolants in terms of a local mesh ratio”, Bull. Novosib. Comput. Cent. Ser. Numer. Anal., 1993, no. 1, 87–96 | Zbl
[71] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl
[72] Feng Y. Y., Kozak J., “On generalized Euler-Frobenius polynomial”, J. Approxim. Theory, 32:4 (1981), 327–338 | DOI | MR | Zbl
[73] Höllig K., “$L_\infty$-boundedness of $L_2$-projections on splines for a geometric mesh”, J. Approxim. Theory, 33:4 (1981), 318–333 | DOI | MR
[74] Mityagin B., “Quadratic pencils and least-squares piecewise-polynomial approximation”, Math. Comput., 40:161 (1983), 283–300 | DOI | MR | Zbl
[75] Jia R.-Q., “$L_\infty$-boundedness of $L_2$-projections on splines for a multiple geometric mesh”, Math. Comput., 48:178 (1987), 675–690 | MR | Zbl
[76] de Boor C., “On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector”, Tr. IMM UrO RAN, 17, no. 3, 2011, 24–29 ; Proc. Steklov Inst. Math., 277, Suppl. 1, 2012, S73–S78 | DOI
[77] Volkov Yu. S., “Bezuslovnaya skhodimost esche odnoi srednei proizvodnoi dlya interpolyatsionnykh splainov nechetnoi stepeni”, Dokl. AN, 401:5 (2005), 592–594 | MR | Zbl
[78] Volkov Yu. S., “Obratnye tsiklicheskikh lentochnykh matrits i skhodimost protsessov interpolyatsii dlya proizvodnykh periodicheskikh interpolyatsionnykh splainov”, Sib. zhurn. vychisl. matematiki, 13:3 (2010), 243–253 | Zbl
[79] Volkov Yu. S., “O skhodimosti protsessa interpolyatsii dlya proizvodnykh polnogo splaina”, Ukraïnskii matematichnii visnik, 9:2 (2012), 278–296 | Zbl
[80] Volkov Yu. S., Usloviya ogranichennosti operatorov splain-interpolyatsii, Preprint No 167, IM SO RAN, Novosibirsk, 2006, 18 pp.
[81] Subbotin Yu. N., “Priblizhenie splainami i gladkie bazisy v $C(0,2\pi)$”, Mat. zametki, 12:1 (1972), 43–51 | MR | Zbl
[82] Schultz M. H., Varga R. S., “$L$-splines”, Numer. Math., 10:4 (1967), 345–369 | DOI | MR | Zbl
[83] Kindalev B. S., “Asimptoticheskie formuly dlya splainov nechetnoi stepeni i approksimatsiya proizvodnykh vysokogo poryadka”, Vychisl. sistemy, 93, IM SO AN SSSR, Novosibirsk, 1982, 39–52 | MR
[84] Lucas T. R., “Asymptotic expansions for interpolating periodic splines”, SIAM J. Numer. Anal., 19:5 (1982), 1051–1066 | DOI | MR | Zbl
[85] Subbotin Yu. N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138, 1975, 118–173 ; Subbotin Yu. N., “Extremal problems of functional interpolation and interpolation-in-the-mean splines”, Proc. Steklov Inst. Math., 138, 1977, 127–185 | MR | Zbl | Zbl
[86] Volkov Yu. S., Miroshnichenko V. L., “O priblizhenii proizvodnykh skachkom interpolyatsionnogo splaina”, Mat. zametki, 89:1 (2011), 127–130 | DOI | MR | Zbl
[87] Tikhomirov V. M., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sbornik, 80(122):2(10) (1969), 290–304 | MR | Zbl
[88] Korneichuk N. P., “O priblizhenii interpolyatsionnymi splainami funktsii i ikh proizvodnykh”, Dokl. AN SSSR, 264:5 (1982), 1063–1066 | MR
[89] Korneichuk N. P., “O priblizhenii parabolicheskimi splainami differentsiruemykh funktsii i ikh proizvodnykh”, Ukr. mat. zhurn., 35:6 (1983), 702–710 | MR
[90] Korneichuk N. P., “Nekotorye tochnye neravenstva dlya differentsiruemykh funktsii i otsenka priblizheniya funktsii i ikh proizvodnykh interpolyatsionnymi kubicheskimi splainami”, Sib. mat. zhurn., 24:5 (1983), 94–108 | MR
[91] Korneichuk N. P., “O povedenii proizvodnykh pogreshnosti splain-interpolirovaniya”, Ukr. mat. zhurn., 43:1 (1991), 67–72 | MR
[92] Korneichuk N. P., “O poluchenii tochnykh otsenok dlya proizvodnoi pogreshnosti splain-interpolirovaniya”, Ukr. mat. zhurn., 43:2 (1991), 206–210 | MR
[93] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR
[94] Subbotin Yu. N., “Ekstremalnye zadachi teorii priblizheniya funktsii pri nepolnoi informatsii”, Tr. MIAN SSSR, 145, 1980, 152–168 ; Subbotin Yu. N., “Extremal problems in the theory of approximation of functions on the basis of incomplete information”, Proc. Steklov Inst. Math., 145, 1981, 167–185 | MR | Zbl | Zbl
[95] Sazanov A. A., “Verkhnie grani uklonenii nekotorykh klassov funktsii”, Metody splain-funktsii, Vychisl. sistemy, 81, IM SO AN SSSR, Novosibirsk, 1979, 31–41
[96] Subbotin Yu. N., “Approksimatsiya krivizny gladkikh klassov ploskikh krivykh elementami konechnomernykh podprostranstv”, Izv. Tulskogo gos. un-ta. Estestvennye nauki, 2012, no. 3, 41–47
[97] Kaliev P. U., “Algoritm polucheniya tochnykh konstant v otsenkakh pogreshnosti priblizheniya splainami nechetnoi stepeni na ravnomernoi setke”, Approksimatsiya splainami, Vychisl. sistemy, 128, IM SO AN SSSR, Novosibirsk, 1988, 3–31 | MR
[98] Reimer M., “Best constants occuring with the modulus of continuity in the error estimate for spline interpolants of odd degree on equidistant grids”, Numer. Math., 44:3 (1984), 407–415 | DOI | MR | Zbl
[99] Schurer F., Cheney E. W., “On interpolating cubic splines with equally-spaced nodes”, Indag. Math., 30:5 (1968), 517–524 | MR
[100] Schurer F., On interpolating periodic quintic spline functions with equally-spaced nodes, T.H.-Report 69-WSK-01, Tech. Univ. Eindhoven, Eindhoven, 1969 | MR | Zbl
[101] Zhensykbaev A. A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh periodicheskikh funktsii splainami $r$-go poryadka”, Mat. zametki, 13:2 (1973), 217–228 | MR | Zbl
[102] Richards F. B., “Best bounds for the uniform periodic spline interpolation operator”, J. Approxim. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl
[103] Richards F. B., “The Lebesgue constants for cardinal spline interpolation”, J. Approxim. Theory, 14:2 (1975), 83–92 | DOI | MR | Zbl
[104] Meinardus G., “Über die Norm des Operators der kardinalen Spline-Interpolation”, J. Approxim. Theory, 16:4 (1976), 289–298 | DOI | MR | Zbl
[105] Subbotin Yu. N., Telyakovskii S. A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sbornik, 191:8 (2000), 131–140 | DOI | MR | Zbl
[106] Subbotin Yu. N., Telyakovskii S. A., “Priblizhenie proizvodnykh proizvodnymi interpolyatsionnykh splainov”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, 2003, 320–333 | MR | Zbl
[107] Volkov Yu. S., Dve konstruktsii interpolyatsionnykh splainov chetnoi stepeni, Preprint No 169, IM SO RAN, Novosibirsk, 2006, 32 pp.
[108] Wang J., “On optimal error bounds for interpolating splines”, Scientia Sinica (Ser. A), 25:10 (1982), 1056–1065 | MR | Zbl
[109] Dubeau F., Savoie J., “Optimal error bounds for quadratic spline interpolation”, J. Approxim. Theory, 82:1 (1995), 1–14 | DOI | MR | Zbl
[110] Günttner R., “Exact bounds for the uniform approximation by cardinal spline interpolants”, Numer. Math., 68:2 (1994), 263–267 | DOI | MR | Zbl