Description of a~helical motion of an incompressible nonviscous fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 43-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of describing the motion of a fluid filling at any specific instant $t\ge0$ a domain $D\subset R^3$ in terms of velocity $\mathbf v$ and pressure $p$. We assume that the pair of variables $(\mathbf v,p)$ satisfies a system of equations that includes Euler's equation and the incompressible fluid continuity equation. For the case of an axially symmetric cylindrical layer $D$, we find a general solution of this system of equations in the class of vector fields $\mathbf v$ whose lines for any $t\ge0$ coincide everywhere in $D$ with their vortex lines and lie on axially symmetric cylindrical surfaces nested in $D$. The general solution is characterized in a theorem. As an example, we specify a family of solutions expressed in terms of cylindrical functions, which, for $D=R^3$, includes a particular solution obtained for the first time by I. S. Gromeka in the case of steady-state helical cylindrical motions.
Keywords:
scalar and vector fields, curl, helical motion
Mots-clés : Gromeka's problem.
Mots-clés : Gromeka's problem.
@article{TIMM_2014_20_1_a4,
author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
title = {Description of a~helical motion of an incompressible nonviscous fluid},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--51},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a4/}
}
TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - Description of a~helical motion of an incompressible nonviscous fluid JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 43 EP - 51 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a4/ LA - ru ID - TIMM_2014_20_1_a4 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T Description of a~helical motion of an incompressible nonviscous fluid %J Trudy Instituta matematiki i mehaniki %D 2014 %P 43-51 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a4/ %G ru %F TIMM_2014_20_1_a4
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. Description of a~helical motion of an incompressible nonviscous fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a4/