Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 32-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a natural class of composite finite elements that provides the $m$th-order smoothness of the resulting piecewise polynomial function on the triangulated domain and does not require information on neighboring elements. It is known that, to provide the required convergence rate, the “smallest angle condition” must be often imposed on the triangulation in the finite element method; i.e., the smallest possible values of the smallest angles of the triangles must be lower bounded. On the other hand, the negative role of the smallest angle can be weakened (but not excluded completely) by choosing appropriate interpolation conditions. As shown earlier, for a large number of methods of choosing interpolation conditions in the construction of simple (noncomposite) finite elements, including traditional conditions, the influence of the smallest angle of the triangle on the error of approximation of derivatives of a function by derivatives of the interpolation polynomial is essential for a number of derivatives of order 2 and above for $m\ge1$. In the present paper, a similar result is proved for some class of composite finite elements.
Mots-clés : multidimensional interpolation
Keywords: finite element method, smallest angle condition, spline functions on triangulations.
@article{TIMM_2014_20_1_a3,
     author = {N. V. Baidakova},
     title = {Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a3/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 32
EP  - 42
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a3/
LA  - ru
ID  - TIMM_2014_20_1_a3
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 32-42
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a3/
%G ru
%F TIMM_2014_20_1_a3
N. V. Baidakova. Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a3/