A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 322-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Dirichlet problem approximated by the standard monotone difference scheme on a uniform grid is considered for a singularly perturbed ordinary differential convection-diffusion equation with perturbation parameter $\varepsilon$ ($\varepsilon\in(0,1]$) multiplying the highest-order derivative. Such a scheme does not converge $\varepsilon$-uniformly and, moreover, in the case of its convergence, it is not $\varepsilon$-uniformly well-conditioned and stable to computer perturbations. In this paper, a technique is developed to study solutions of the standard difference scheme in the presence of computer perturbations. Conditions are derived under which the standard finite difference scheme becomes stable to perturbations, necessary and sufficient conditions are obtained for the convergence of computer solutions as the number of grid nodes tends to infinity, and estimates are given for the number of grid nodes (depending on the parameter $\varepsilon$ and computer perturbations $\vartriangle$ defined by the number of computer word digits) for which the error of the numerical solution is smallest.
Keywords: singularly perturbed boundary value problem, standard difference scheme, uniform grid, conditioning of a difference scheme, perturbed difference scheme, stable standard difference scheme.
Mots-clés : convection-diffusion equation, maximum norm, computer perturbations, data perturbations
@article{TIMM_2014_20_1_a29,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A stable standard difference scheme for a~singularly perturbed convection-diffusion equation in the presence of computer perturbations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {322--333},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 322
EP  - 333
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/
LA  - ru
ID  - TIMM_2014_20_1_a29
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 322-333
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/
%G ru
%F TIMM_2014_20_1_a29
G. I. Shishkin; L. P. Shishkina. A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 322-333. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[2] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 140, CRC Press, Boca Raton, 2009, 408 pp. | MR | Zbl

[3] Shishkin G. I., “Obuslovlennost raznostnoi skhemy metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 291–304

[4] Shishkin G. I., “Ustoichivost standartnoi skhemy dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Dokl. AN, 448:6 (2013), 648–650 | DOI | MR | Zbl

[5] Shishkin G. I., “Stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation”, Proc. of the 9th European Conf. on Numerical Math. and Advanced Appl., ENUMATH 2011 (Leicester, September 2011), eds. A. Cangiani, R. L. Davidchack, E. Georgoulis, A. N. Gorban, J. Levesley, M. V. Tretyakov, Springer, Berlin, 2013, 293–302

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 233 pp.

[7] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Chapman HAll/CRC, Boca Raton, 2000, 254 pp. | MR | Zbl

[8] Roos H.-G., Stynes M., Tobiska L., Robuts numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer Series in Computational Mathematics, 24, 2 ed., Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl

[9] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, Revised ed., World Scientific, Singapore, 2012, 176 pp. | MR | Zbl