Mots-clés : convection-diffusion equation, maximum norm, computer perturbations, data perturbations
@article{TIMM_2014_20_1_a29,
author = {G. I. Shishkin and L. P. Shishkina},
title = {A stable standard difference scheme for a~singularly perturbed convection-diffusion equation in the presence of computer perturbations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {322--333},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/}
}
TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 322 EP - 333 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/ LA - ru ID - TIMM_2014_20_1_a29 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations %J Trudy Instituta matematiki i mehaniki %D 2014 %P 322-333 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/ %G ru %F TIMM_2014_20_1_a29
G. I. Shishkin; L. P. Shishkina. A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 322-333. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a29/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[2] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 140, CRC Press, Boca Raton, 2009, 408 pp. | MR | Zbl
[3] Shishkin G. I., “Obuslovlennost raznostnoi skhemy metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 291–304
[4] Shishkin G. I., “Ustoichivost standartnoi skhemy dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Dokl. AN, 448:6 (2013), 648–650 | DOI | MR | Zbl
[5] Shishkin G. I., “Stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation”, Proc. of the 9th European Conf. on Numerical Math. and Advanced Appl., ENUMATH 2011 (Leicester, September 2011), eds. A. Cangiani, R. L. Davidchack, E. Georgoulis, A. N. Gorban, J. Levesley, M. V. Tretyakov, Springer, Berlin, 2013, 293–302
[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 233 pp.
[7] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Chapman HAll/CRC, Boca Raton, 2000, 254 pp. | MR | Zbl
[8] Roos H.-G., Stynes M., Tobiska L., Robuts numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer Series in Computational Mathematics, 24, 2 ed., Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl
[9] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, Revised ed., World Scientific, Singapore, 2012, 176 pp. | MR | Zbl