On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 305-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We use an example of a controlled nonlinear Goursat–Darboux system to study a rather general approach to the approximate solution of optimal control problems associated with lumped and distributed parameter systems that are affine in control variables; the domain of independent variables can be fixed or varied. The main idea of this approach consists in the approximation of the original infinite-dimensional optimization problem by a smooth finite-dimensional mathematical programming problem of comparatively small dimension with the help of spline discontinuous interpolation of the desired control on a floating mesh. We establish the existence of partial derivatives for functions of the approximating problem and derive necessary formulas.
Keywords: approximate solving of optimal control problems, Goursat–Darboux system, spline interpolation of the control, floating mesh, derivatives formulas.
@article{TIMM_2014_20_1_a28,
     author = {A. V. Chernov},
     title = {On the smoothness of an approximated optimization problem for {a~Goursat{\textendash}Darboux} system on a~varied domain},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {305--321},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a28/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 305
EP  - 321
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a28/
LA  - ru
ID  - TIMM_2014_20_1_a28
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 305-321
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a28/
%G ru
%F TIMM_2014_20_1_a28
A. V. Chernov. On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 305-321. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a28/

[1] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sib. zhurn. vychisl. matematiki, 10:1 (2007), 1–28 | Zbl

[2] Vasilev F. P., Ivanov R. P., “O priblizhennom reshenii zadachi bystrodeistviya v banakhovykh prostranstvakh pri nalichii ogranichenii na fazovye koordinaty”, Zhurn. vychisl. matematiki i mat. fiziki, 11:2 (1971), 328–347 | MR | Zbl

[3] Volin Yu. M., Ostrovskii G. M., “O metode posledovatelnykh priblizhenii rascheta optimalnykh rezhimov nekotorykh sistem s raspredelennymi parametrami”, Avtomatika i telemekhanika, 26:7 (1965), 1197–1204 | MR

[4] Golubev Yu. F., Seregin I. A., Khayrullin R. Z., “The floating nodes method”, Sov. J. Comput. Syst. Sci., 30:2 (1992), 71–76 | MR

[5] Li R., Teo K. L., Wong K. H., Duan G. R., “Control parameterization enhancing transform for optimal control of switched systems”, Math. Comput. Modelling, 43:11–12 (2006), 1393–1403 | MR | Zbl

[6] Chernov A. V., “O gladkikh konechnomernykh approksimatsiyakh raspredelennykh optimizatsionnykh zadach s pomoschyu diskretizatsii upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 53:12 (2013), 2029–2043 | DOI | MR

[7] Chernov A. V., “O priblizhennom reshenii zadach optimalnogo upravleniya so svobodnym vremenem”, Vestn. Nizhegor. un-ta im. N. I. Lobachevskogo, 2012, no. 6(1), 107–114

[8] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | MR | Zbl

[9] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[10] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[11] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1616–1629 | MR | Zbl

[12] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, v. 1, IL, M., 1962, 896 pp.

[13] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Ch. I, NNGU, N. Novgorod, 1992, 110 pp.