Ultrafilters of measurable spaces and their application in extension constructions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 285-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider representations of Stone compact sets and of their analogs in connection with the use of ultrafilters as generalized elements in abstract attainability problems with constraints of asymptotic nature.
Keywords: compact set, topological space, ultrafilter.
@article{TIMM_2014_20_1_a27,
     author = {A. G. Chentsov},
     title = {Ultrafilters of measurable spaces and their application in extension constructions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {285--304},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a27/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters of measurable spaces and their application in extension constructions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 285
EP  - 304
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a27/
LA  - ru
ID  - TIMM_2014_20_1_a27
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters of measurable spaces and their application in extension constructions
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 285-304
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a27/
%G ru
%F TIMM_2014_20_1_a27
A. G. Chentsov. Ultrafilters of measurable spaces and their application in extension constructions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 285-304. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a27/

[1] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, 1989, 5–128 | MR | Zbl

[2] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[3] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1071 pp.

[4] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovrem. matematika i ee prilozheniya (AN Gruzii, In-t kibernetiki), 26, 2005, 119–150

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[6] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[8] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[9] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 268–293

[10] Chentsov A. G., “Ultrafiltry v konstruktsiyakh mnozhestv prityazheniya: zadacha soblyudeniya ogranichenii asimptoticheskogo kharaktera”, Differents. uravneniya, 47:7 (2011), 1047–1064 | MR | Zbl

[11] Chentsov A. G., “Ob odnom predstavlenii rezultatov deistviya priblizhennykh reshenii v zadache s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 225–239

[12] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 293–311

[13] Chentsov A. G., “K voprosu o predstavlenii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. vuzov. Matematika, 2012, no. 10, 45–59 | MR | Zbl

[14] Chentsov A. G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 298–314

[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[16] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[17] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[18] Chentsov A. G., “Ob odnom primere postroeniya mnozhestv prityazheniya s ispolzovaniem prostranstva Stouna”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 4, 108–124

[19] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, Izd-vo UGTU-UPI, Ekaterinburg, 2009, 389 pp.

[20] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.

[21] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[22] Chentsov A. G., “K voprosu o predstavlenii ultrafiltrov v proizvedenii izmerimykh prostranstv”, Tr. In-ta matematiki i mekhaniki Uro RAN, 19, no. 2, 2013, 307–319

[23] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 542 pp.

[24] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[25] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl