The invariance principle for nonautonomous functional differential inclusions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 271-284
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For nonautonomous functional differential inclusions, the notion of limiting functional differential inclusions is introduced, their properties are studied, invariance type properties of $\omega$-limiting sets of solutions are investigated, and an analog of the LaSalle invariance principle with the use of Lyapunov functionals with constant-sign derivative is established.
Keywords: limiting functional differential inclusion, nonautonomous system, Lyapunov functional, invariance principle.
Mots-clés : quasi-invariant set
@article{TIMM_2014_20_1_a26,
     author = {I. A. Finogenko},
     title = {The invariance principle for nonautonomous functional differential inclusions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--284},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a26/}
}
TY  - JOUR
AU  - I. A. Finogenko
TI  - The invariance principle for nonautonomous functional differential inclusions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 271
EP  - 284
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a26/
LA  - ru
ID  - TIMM_2014_20_1_a26
ER  - 
%0 Journal Article
%A I. A. Finogenko
%T The invariance principle for nonautonomous functional differential inclusions
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 271-284
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a26/
%G ru
%F TIMM_2014_20_1_a26
I. A. Finogenko. The invariance principle for nonautonomous functional differential inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 271-284. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a26/

[1] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR | Zbl

[2] Rush N., Abets M., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 300 pp. | MR

[3] Sell G. R., “Nonautonomous differential equations and topological dynamics. I. The basic theory”, Trans. Amer. Vath. Soc., 127:2 (1967), 241–262 | MR | Zbl

[4] Artstein Z., “Topological dynamics of an ordinary differential equation”, J. Differ. Equations, 23:2 (1977), 216–223 | DOI | MR | Zbl

[5] Artstein Z., “Topological dynamics of ordinary differential equations and Kurzweil equation”, J. Differ. Equations, 23:2 (1977), 224–243 | DOI | MR | Zbl

[6] Artstein Z., “The limiting equations of nonautonomous ordinary differential equations”, J. Differ. Equations, 25:2 (1977), 184–202 | DOI | MR | Zbl

[7] Artstein Z., “Uniform asymptotic stability via the limiting equations”, J. Differ. Equations, 27:2 (1978), 172–189 | DOI | MR | Zbl

[8] Andreev A. S., Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, Izd-vo UlGU, Ulyanovsk, 2005, 327 pp.

[9] Andreev A. S., “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4–55 | MR | Zbl

[10] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR

[11] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969, 624 pp. | MR

[12] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR

[13] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[14] Finogenko I. A., “O resheniyakh nekotorykh funktsionalno-differentsialnykh vklyuchenii v banakhovom prostranstve”, Differents. uravneniya, 18:11 (1982), 2001–2002 | MR | Zbl

[15] Davy J. L., “Properties of the solution set of a generalized differential equation”, Bull. Austral. Math. Soc., 6 (1972), 379–398 | DOI | MR | Zbl

[16] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[17] Kim A. V., i-gladkii analiz i funktsionalno-differentsialnye uravneniya, Izd-vo IMM UrO RAN, Ekaterinburg, 1996, 233 pp.

[18] Surkov A. V., “Ob ustoichivosti funktsionalno-differentsialnykh vklyuchenii s ispolzovaniem invariantno differentsiruemykh funktsionalov Lyapunova”, Differents. uravneniya, 43:8 (2007), 1055–1063 | MR | Zbl