The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 264-270
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal P_n(\alpha)$ be the set of algebraic polynomials $p_n$ of order $n$ with real coefficients and zero weighted mean value with ultraspherical weight $\varphi^{(\alpha)}(t)=(1-t^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)}(t)p_n(t)\,dx=0$. We study the problem on the smallest value $\mu_n=\inf\{m(p_n)\colon p_n\in\mathcal P_n(\alpha)\}$ of the weighted measure $m(p_n)=\int_{\mathcal X(p_n)}\varphi^{(\alpha)}(t)\,dt$ of the set where $p_n$ is nonnegative. The order of $\mu_n$ with respect to $n$ is found: it is proved that $\mu_n(\alpha)\asymp n^{-2(\alpha+1)}$ as $n\to\infty$.
Keywords: algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.
@article{TIMM_2014_20_1_a25,
     author = {K. S. Tikhanovtseva},
     title = {The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {264--270},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/}
}
TY  - JOUR
AU  - K. S. Tikhanovtseva
TI  - The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 264
EP  - 270
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/
LA  - ru
ID  - TIMM_2014_20_1_a25
ER  - 
%0 Journal Article
%A K. S. Tikhanovtseva
%T The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 264-270
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/
%G ru
%F TIMM_2014_20_1_a25
K. S. Tikhanovtseva. The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 264-270. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/

[1] Babenko A. G., Ekstremalnye svoistva polinomov i tochnye otsenki srednekvadratichnykh priblizhenii, Dis. $\dots$ kand. fiz.-mat. nauk, Sverdlovsk, 1987, 109 pp. | MR

[2] Arestov V. V., Raevskaya V. Yu., “Odna ekstremalnaya zadacha dlya algebraicheskikh mnogochlenov s n ulevym srednim znacheniem na otrezke”, Mat. zametki, 62:3 (1997), 332–342 | DOI | MR | Zbl

[3] Tikhanovtseva K. S., “O naimenshei mere mnozhestva neotritsatelnosti algebraicheskogo mnogochlena s nulevym vzveshennym srednim znacheniem na otrezke”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 300–311

[4] Kuznetsov S. V., Tikhanovtseva K. S., “Mnozhestvo neotritsatelnosti naimenshei mery mnogochlenov s nulevym vzveshennym srednim znacheniem na otrezke”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 211–223

[5] Deikalova M. V., “Ob odnoi ekstremalnoi zadache dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na mnogomernoi sfere”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 44:9 (2006), 42–54

[6] Daugavet I. K., Vvedenie v klassicheskuyu teoriyu priblizheniya funktsii, Ucheb. posobie, SPb., 2011, 232 pp.

[7] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.