The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 264-270

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal P_n(\alpha)$ be the set of algebraic polynomials $p_n$ of order $n$ with real coefficients and zero weighted mean value with ultraspherical weight $\varphi^{(\alpha)}(t)=(1-t^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)}(t)p_n(t)\,dx=0$. We study the problem on the smallest value $\mu_n=\inf\{m(p_n)\colon p_n\in\mathcal P_n(\alpha)\}$ of the weighted measure $m(p_n)=\int_{\mathcal X(p_n)}\varphi^{(\alpha)}(t)\,dt$ of the set where $p_n$ is nonnegative. The order of $\mu_n$ with respect to $n$ is found: it is proved that $\mu_n(\alpha)\asymp n^{-2(\alpha+1)}$ as $n\to\infty$.
Keywords: algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.
@article{TIMM_2014_20_1_a25,
     author = {K. S. Tikhanovtseva},
     title = {The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {264--270},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/}
}
TY  - JOUR
AU  - K. S. Tikhanovtseva
TI  - The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 264
EP  - 270
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/
LA  - ru
ID  - TIMM_2014_20_1_a25
ER  - 
%0 Journal Article
%A K. S. Tikhanovtseva
%T The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 264-270
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/
%G ru
%F TIMM_2014_20_1_a25
K. S. Tikhanovtseva. The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 264-270. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a25/