Local exponential splines with arbitrary knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 258-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct local $\mathcal L$-splines that have an arbitrary arrangement of knots and preserve the kernel of a linear differential operator $\mathcal L$ of order $r$ with constant coefficients and real pairwise distinct roots of the characteristic polynomial.
Keywords: local $L$-splines, differential operator, arbitrary knots.
@article{TIMM_2014_20_1_a24,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {Local exponential splines with arbitrary knots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--263},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Local exponential splines with arbitrary knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 258
EP  - 263
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/
LA  - ru
ID  - TIMM_2014_20_1_a24
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T Local exponential splines with arbitrary knots
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 258-263
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/
%G ru
%F TIMM_2014_20_1_a24
E. V. Strelkova; V. T. Shevaldin. Local exponential splines with arbitrary knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[2] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[3] Shevaldina E. V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU. Estestvennye nauki, 2009, no. 2, 62–73

[4] Shevaldina E. V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl

[5] Strelkova E. V., Shevaldin V. T., “Approksimatsiya lokalnymi $\mathcal L$-splainami, tochnymi na podprostranstvakh yadra differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, Ekaterinburg, 2010, 272–280

[6] Strelkova E. V., Shevaldin V. T., “Formosokhranenie pri approksimatsii lokalnymi eksponentsialnymi splainami proizvolnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, Ekaterinburg, 2011, 291–299

[7] Volkov Yu. S., Pytkeev E. G., Shevaldin V. T., “Poryadki approksimatsii lokalnymi eksponentsialnymi splainami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 135–144

[8] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | Zbl

[9] Subbotin Yu. N., “Approksimatsiya polinomialnymi i trigonometricheskimi splainami tretego poryadka, sokhranyayuschaya nekotorye svoistva approksimiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 156–166

[10] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “Lokalnaya approksimatsiya splainami so smescheniem uzlov”, Mat. tr., 14:2 (2011), 73–82 | MR

[11] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[12] Popoviciu T., “Sur le reste dans certains formules lineares d'approximation de l'analyse”, Mathematica (Cluj), 1 (1959), 95–142 | MR | Zbl

[13] Wronicz Z., Chebyshevian splines: Dissertationes mathematical, Polska Academia Nauk, Institute Mathematyczny, Warszawa, 1990, 99 pp. | MR

[14] Muhlbach G., “A recurrence formula for generalized divided differences and some applications”, J. Approx. Theory, 9:2 (1973), 165–172 | DOI | MR | Zbl

[15] Walz G., “Generalized divided differences, with applications to generalized $B$-splines”, Calcolo, 29:1–2 (1992), 111–123 | DOI | MR | Zbl

[16] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp.