@article{TIMM_2014_20_1_a24,
author = {E. V. Strelkova and V. T. Shevaldin},
title = {Local exponential splines with arbitrary knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--263},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/}
}
E. V. Strelkova; V. T. Shevaldin. Local exponential splines with arbitrary knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a24/
[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[2] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl
[3] Shevaldina E. V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU. Estestvennye nauki, 2009, no. 2, 62–73
[4] Shevaldina E. V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl
[5] Strelkova E. V., Shevaldin V. T., “Approksimatsiya lokalnymi $\mathcal L$-splainami, tochnymi na podprostranstvakh yadra differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, Ekaterinburg, 2010, 272–280
[6] Strelkova E. V., Shevaldin V. T., “Formosokhranenie pri approksimatsii lokalnymi eksponentsialnymi splainami proizvolnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, Ekaterinburg, 2011, 291–299
[7] Volkov Yu. S., Pytkeev E. G., Shevaldin V. T., “Poryadki approksimatsii lokalnymi eksponentsialnymi splainami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 135–144
[8] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | Zbl
[9] Subbotin Yu. N., “Approksimatsiya polinomialnymi i trigonometricheskimi splainami tretego poryadka, sokhranyayuschaya nekotorye svoistva approksimiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 156–166
[10] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “Lokalnaya approksimatsiya splainami so smescheniem uzlov”, Mat. tr., 14:2 (2011), 73–82 | MR
[11] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl
[12] Popoviciu T., “Sur le reste dans certains formules lineares d'approximation de l'analyse”, Mathematica (Cluj), 1 (1959), 95–142 | MR | Zbl
[13] Wronicz Z., Chebyshevian splines: Dissertationes mathematical, Polska Academia Nauk, Institute Mathematyczny, Warszawa, 1990, 99 pp. | MR
[14] Muhlbach G., “A recurrence formula for generalized divided differences and some applications”, J. Approx. Theory, 9:2 (1973), 165–172 | DOI | MR | Zbl
[15] Walz G., “Generalized divided differences, with applications to generalized $B$-splines”, Calcolo, 29:1–2 (1992), 111–123 | DOI | MR | Zbl
[16] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp.