Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 247-257
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain exact order estimates for approximations of mixed smoothness classes $\mathbf{MB}^\Omega_{p,\theta}$ by Fourier sums in the metric $L_q$ for $1$. The spectrum of approximation polynomials lies in the sets generated by level surfaces of the function $\Omega(t)/\prod_{j=1}^dt_j^{1/p-1/q}$. Under some matching conditions on the parameters $p,q$ and $\theta$, we obtain exact order estimates for Kolmogorov widths of the classes under consideration in the metric $L_q$.
Keywords:
hyperbolic cross, Kolmogorov width, best approximation, mixed smoothness, Fourier sums.
@article{TIMM_2014_20_1_a23,
author = {S. A. Stasyuk},
title = {Approximation by {Fourier} sums and {Kolmogorov} widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--257},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/}
}
TY - JOUR
AU - S. A. Stasyuk
TI - Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
JO - Trudy Instituta matematiki i mehaniki
PY - 2014
SP - 247
EP - 257
VL - 20
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/
LA - ru
ID - TIMM_2014_20_1_a23
ER -
%0 Journal Article
%A S. A. Stasyuk
%T Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 247-257
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/
%G ru
%F TIMM_2014_20_1_a23
S. A. Stasyuk. Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 247-257. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/