Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 247-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain exact order estimates for approximations of mixed smoothness classes $\mathbf{MB}^\Omega_{p,\theta}$ by Fourier sums in the metric $L_q$ for $1$. The spectrum of approximation polynomials lies in the sets generated by level surfaces of the function $\Omega(t)/\prod_{j=1}^dt_j^{1/p-1/q}$. Under some matching conditions on the parameters $p,q$ and $\theta$, we obtain exact order estimates for Kolmogorov widths of the classes under consideration in the metric $L_q$.
Keywords: hyperbolic cross, Kolmogorov width, best approximation, mixed smoothness, Fourier sums.
@article{TIMM_2014_20_1_a23,
     author = {S. A. Stasyuk},
     title = {Approximation by {Fourier} sums and {Kolmogorov} widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--257},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/}
}
TY  - JOUR
AU  - S. A. Stasyuk
TI  - Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 247
EP  - 257
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/
LA  - ru
ID  - TIMM_2014_20_1_a23
ER  - 
%0 Journal Article
%A S. A. Stasyuk
%T Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 247-257
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/
%G ru
%F TIMM_2014_20_1_a23
S. A. Stasyuk. Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 247-257. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a23/

[1] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5, 1956, 483–522 | MR | Zbl

[2] Sun Y., Wang H., “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness”, Tr. MIAN, 219, 1997, 356–377 | MR | Zbl

[3] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN, 187, 1989, 143–161 | MR | Zbl

[4] Pustovoitov N. N., “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20:1 (1994), 35–48 | DOI | MR

[5] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk, 29:3 (1974), 161–178 | MR | Zbl

[6] Stasyuk S. A., Fedunik O. V., “Approksimativni kharakteristiki klasiv $B^\Omega_{p,\theta}$ periodichnikh funktsii bagatokh zminnikh”, Ukr. mat. zhurn., 58:5 (2006), 692–704 | MR | Zbl

[7] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, 1986, 3–113 | MR | Zbl

[8] Pustovoitov N. N., “Priblizhenie mnogomernykh funktsii s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Mat. zametki, 65:1 (1999), 107–117 | DOI | MR | Zbl

[9] Romanyuk A. S., Approksimativnye kharakteristiki klassov periodicheskikh funktsii mnogikh peremennykh, Pratsi Institutu matematiki NAN Ukraïni, 92, Institut matematiki NAN Ukraïni, Kiïv, 2012, 353 pp.

[10] Stasyuk S. A., “Nailuchshie priblizheniya periodicheskikh funktsii mnogikh peremennykh iz klassov $B^\Omega_{p,\theta}$”, Mat. zametki, 87:1 (2010), 108–121 | DOI | MR | Zbl

[11] Romanyuk A. S., “O priblizhenii klassov periodicheskikh funktsii mnogikh peremennykh”, Ukr. mat. zhurn., 44:5 (1992), 662–672 | MR | Zbl

[12] Temlyakov V. N., Approximation of periodic functions, Nova Science, New York, 1993, 419 pp. | MR | Zbl

[13] Stasyuk S. A., “Naikraschi nablizhennya, kolmogorovski ta trigonometrichni poperechniki klasiv $B_{p,\theta}^\Omega$ periodichnikh funktsii bagatokh zminnikh”, Ukr. mat. zhurn., 56:11 (2004), 1557–1568 | MR | Zbl

[14] Konograi A. F., “Poperechniki klasiv $B^\omega_{p,\theta}$ periodichnikh funktsii bagatokh”, Mat. Studiï, 29:2 (2008), 192–206 | MR

[15] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_q$”, Ukr. mat. zhurn., 43:10 (1991), 1398–1408 | MR | Zbl

[16] Galeev E. M., “Poperechniki klassov Besova $B^r_{p,\theta}(\mathbb T^d)$”, Mat. zametki, 69:5 (2001), 656–665 | DOI | MR | Zbl

[17] Pustovoitov N. N., “Ortopoperechniki klassov mnogomernykh periodicheskikh funktsii, mazhoranta smeshannykh modulei nepreryvnosti kotorykh soderzhit kak stepennye, tak i logarifmicheskie mnozhiteli”, Anal. Math., 34:3 (2008), 187–224 | DOI | MR | Zbl

[18] Pustovoitov N. N., “O nailuchshikh priblizheniyakh analogami “svoikh” i “ne svoikh” giperbolicheskikh krestov”, Mat. zametki, 93:3 (2013), 466–476 | DOI | Zbl

[19] Pustovoitov N. N., “O poperechnikakh po Kolmogorovu klassov funktsii s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 38:1 (2012), 41–64 | DOI | MR | Zbl