One method for solving systems of nonlinear partial differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 238-246
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for reducing systems of partial differential equations to corresponding systems of ordinary differential equations is proposed. We study a system of equations describing two-dimensional, cylindrical, and spherical flows of a polytropic gas, a system of dimensionless Stokes equations for the dynamics of a viscous incompressible fluid, a system of Maxwell equations for vacuum, and a system of gas dynamics equations in cylindrical coordinates. We show how this approach can be used for solving certain problems (shockless compression, turbulence, etc.).
Keywords: systems of nonlinear partial differential equations, investigation method for nonlinear partial differential equations
Mots-clés : exact solutions.
@article{TIMM_2014_20_1_a22,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {One method for solving systems of nonlinear partial differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--246},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - One method for solving systems of nonlinear partial differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 238
EP  - 246
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/
LA  - ru
ID  - TIMM_2014_20_1_a22
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T One method for solving systems of nonlinear partial differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 238-246
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/
%G ru
%F TIMM_2014_20_1_a22
L. I. Rubina; O. N. Ul'yanov. One method for solving systems of nonlinear partial differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 238-246. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/

[1] Rubina L. I., Ulyanov O. N., “O reshenii uravneniya potentsiala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 1, 2008, 130–145

[2] Rubina L. I., Ulyanov O. N., “Odin geometricheskii metod resheniya nelineinykh uravnenii v chastnykh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 209–225

[3] Rubina L. I., Ulyanov O. N., “Reshenie nelineinykh uravnenii v chastnykh proizvodnykh geometricheskim metodom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 209–225

[4] Stanyukovich K. P., Neustanovivshiesya dvizheniya sploshnoi sredy, Gos. izd-vo tekh.-teoret. lit., M., 1955, 804 pp. | MR

[5] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[6] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Gos. izd-vo tekhn.-teoret. lit., M., 1957, 784 pp. | MR

[7] Kurant P., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[8] S. K. Godunov [i dr.], Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[9] Riman B., Sochineniya, Gostekhizdat, M., 1948, 543 pp.

[10] Lorents G. A., Teoriya elektronov i ee primenenie k yavleniyam sveta i teplovogo izlucheniya, 2-e izd., Gostekhizdat, M., 1953, 472 pp.