One method for solving systems of nonlinear partial differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 238-246
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for reducing systems of partial differential equations to corresponding systems of ordinary differential equations is proposed. We study a system of equations describing two-dimensional, cylindrical, and spherical flows of a polytropic gas, a system of dimensionless Stokes equations for the dynamics of a viscous incompressible fluid, a system of Maxwell equations for vacuum, and a system of gas dynamics equations in cylindrical coordinates. We show how this approach can be used for solving certain problems (shockless compression, turbulence, etc.).
Keywords:
systems of nonlinear partial differential equations, investigation method for nonlinear partial differential equations
Mots-clés : exact solutions.
Mots-clés : exact solutions.
@article{TIMM_2014_20_1_a22,
author = {L. I. Rubina and O. N. Ul'yanov},
title = {One method for solving systems of nonlinear partial differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {238--246},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/}
}
TY - JOUR AU - L. I. Rubina AU - O. N. Ul'yanov TI - One method for solving systems of nonlinear partial differential equations JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 238 EP - 246 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/ LA - ru ID - TIMM_2014_20_1_a22 ER -
L. I. Rubina; O. N. Ul'yanov. One method for solving systems of nonlinear partial differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 238-246. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a22/