Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 231-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A novel dual approach to the problem of optimal correction of first-kind improper linear programming problems with respect to their right-hand sides is proposed. It is based on the extension of the traditional Lagrangian by introducing additional regularization and barrier components. Convergence theorems are given for methods based on the augmented Lagrangian, an informal interpretation of the obtained generalized solution is suggested, and results of numerical experiments are presented.
Keywords: linear programming, improper problems, generalized solutions, barrier function method.
@article{TIMM_2014_20_1_a21,
     author = {L. D. Popov},
     title = {Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {231--237},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a21/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 231
EP  - 237
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a21/
LA  - ru
ID  - TIMM_2014_20_1_a21
ER  - 
%0 Journal Article
%A L. D. Popov
%T Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 231-237
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a21/
%G ru
%F TIMM_2014_20_1_a21
L. D. Popov. Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 231-237. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a21/

[1] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[2] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl

[4] Morozov V. A., “O psevdoresheniyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 9:6 (1969), 1387–1391 | MR | Zbl

[5] Kochikov I. V., Matvienko A. N., Yagola A. G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 24:7 (1984), 1087–1090 | MR | Zbl

[6] Skarin V. D., “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 115–128 | Zbl

[7] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11

[8] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl

[9] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR

[10] Eremin I. I., Popov L. D., “Vnutrennie shtrafnye funktsii i dvoistvennost v lineinom programmirovanii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 83–89