Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 17-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the set $\mathscr F_n$ of trigonometric polynomial of degree $n\ge1$ with complex coefficients, we consider the Szegö operator $D^\alpha_\theta$ defined by the relation $D^\alpha_\theta f_n(t)=\cos\theta D^\alpha f_n(t)-\sin\theta D^\alpha\widetilde f_n(t)$ for $\alpha,\theta\in\mathbb R$, $\alpha\ge0$; where $D^\alpha f_n$ and $D^\alpha\widetilde f_n$ are the Weyl fractional derivatives of (real) order $\alpha$ of the polynomial $f_n$ and its conjugate polynomial $\widetilde f_n$. In particular, we prove that, if $\alpha\ge n\ln2n$, then, for any $\theta\in\mathbb R$, the sharp inequality $\|\cos\theta D^\alpha f_n-\sin\theta D^\alpha\widetilde f_n\|_{L_p}\le n^\alpha\|f_n\|_{L_p}$ holds in the spaces $L_p$ for all $p\ge0$ on the set $\mathscr F_n$. For classical derivatives (of integer order $\alpha\ge1$), this inequality was obtained by Szegö (1928) in the uniform norm $(p=\infty)$ and by Zygmund (1931–1935) for $1\le p\infty$. A. I. Kozko (1998) proved this inequality for fractional derivatives of (real) order $\alpha\ge1$ and $1\le p\le\infty$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
trigonometric polynomial, Weyl fractional derivative, Bernstein inequality, Szegö inequality.
                    
                  
                
                
                @article{TIMM_2014_20_1_a2,
     author = {V. V. Arestov and P. Yu. Glazyrina},
     title = {Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a2/}
}
                      
                      
                    TY - JOUR AU - V. V. Arestov AU - P. Yu. Glazyrina TI - Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 17 EP - 31 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a2/ LA - ru ID - TIMM_2014_20_1_a2 ER -
%0 Journal Article %A V. V. Arestov %A P. Yu. Glazyrina %T Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials %J Trudy Instituta matematiki i mehaniki %D 2014 %P 17-31 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a2/ %G ru %F TIMM_2014_20_1_a2
V. V. Arestov; P. Yu. Glazyrina. Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a2/
