Mots-clés : relational morphism.
@article{TIMM_2014_20_1_a19,
author = {T. V. Pervukhina},
title = {On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {215--220},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/}
}
T. V. Pervukhina. On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 215-220. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/
[1] Almeida J., Finite semigroups and universal algebra, World Scientific, Singapore, 1994, 511 pp. | MR | Zbl
[2] Karnofsky J., Rhodes J., “Decidability of complexity one-half for finite semigroups”, Semigroup Forum, 24 (1992), 55–66 | DOI | MR
[3] Pin J.-E., “Relational morphisms, transductions and operations on languages”, Lect. Notes Comp. Sci., 386, 1989, 34–55 | DOI | MR
[4] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR
[5] Rhodes J., Steinberg B., The $q$-theory of finite semigroups, Springer, New York, 2009, 666 pp. | MR | Zbl
[6] Schützenberger M. P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl
[7] Simon I., “Piecewise testable events”, Lect. Notes Comp. Sci., 33, 1975, 214–222 | DOI | MR | Zbl
[8] Straubing H., “On finite $\mathscr J$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl
[9] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure and Applied Algebra, 48 (1987), 83–198 | DOI | MR | Zbl
[10] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, Moskva, 1985, 440 pp. | MR
[11] Pervukhina T. V., “Struktura konechnykh monoidov, udovletvoryayuschikh sootnosheniyu $\mathscr R=\mathscr H$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 181–191