On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 215-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the pseudovariety generated by all finite monoids on which Green's relations $\mathscr R$ and $\mathscr H$ coincide. We find a new algorithm that determines if a given finite monoid belongs to this pseudovariety.
Keywords: finite monoids, Green's relations, monoid pseudovariety, category
Mots-clés : relational morphism.
@article{TIMM_2014_20_1_a19,
     author = {T. V. Pervukhina},
     title = {On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--220},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/}
}
TY  - JOUR
AU  - T. V. Pervukhina
TI  - On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 215
EP  - 220
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/
LA  - ru
ID  - TIMM_2014_20_1_a19
ER  - 
%0 Journal Article
%A T. V. Pervukhina
%T On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 215-220
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/
%G ru
%F TIMM_2014_20_1_a19
T. V. Pervukhina. On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 215-220. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/

[1] Almeida J., Finite semigroups and universal algebra, World Scientific, Singapore, 1994, 511 pp. | MR | Zbl

[2] Karnofsky J., Rhodes J., “Decidability of complexity one-half for finite semigroups”, Semigroup Forum, 24 (1992), 55–66 | DOI | MR

[3] Pin J.-E., “Relational morphisms, transductions and operations on languages”, Lect. Notes Comp. Sci., 386, 1989, 34–55 | DOI | MR

[4] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR

[5] Rhodes J., Steinberg B., The $q$-theory of finite semigroups, Springer, New York, 2009, 666 pp. | MR | Zbl

[6] Schützenberger M. P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl

[7] Simon I., “Piecewise testable events”, Lect. Notes Comp. Sci., 33, 1975, 214–222 | DOI | MR | Zbl

[8] Straubing H., “On finite $\mathscr J$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl

[9] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure and Applied Algebra, 48 (1987), 83–198 | DOI | MR | Zbl

[10] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, Moskva, 1985, 440 pp. | MR

[11] Pervukhina T. V., “Struktura konechnykh monoidov, udovletvoryayuschikh sootnosheniyu $\mathscr R=\mathscr H$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 181–191