On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 215-220
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the pseudovariety generated by all finite monoids on which Green's relations $\mathscr R$ and $\mathscr H$ coincide. We find a new algorithm that determines if a given finite monoid belongs to this pseudovariety.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite monoids, Green's relations, monoid pseudovariety, category
Mots-clés : relational morphism.
                    
                  
                
                
                Mots-clés : relational morphism.
@article{TIMM_2014_20_1_a19,
     author = {T. V. Pervukhina},
     title = {On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--220},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/}
}
                      
                      
                    TY  - JOUR
AU  - T. V. Pervukhina
TI  - On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 215
EP  - 220
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/
LA  - ru
ID  - TIMM_2014_20_1_a19
ER  - 
                      
                      
                    T. V. Pervukhina. On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 215-220. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a19/
                  
                