On one class of differential operators and their application
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 201-214
Voir la notice de l'article provenant de la source Math-Net.Ru
We use a generalized differentiation operator to construct a generalized shift operator, which makes it possible to define a generalized convolution operator in the space $H(\mathbb C)$. Next, we consider the characteristic function of this operator and introduce a generalized Laplace transform. We study the homogeneous equation of the generalized convolution operator, investigate its solvability, and consider the multi-point Vallée Poussin problem.
Keywords:
generalized Bargmann–Fock space, generalized differentiation operator, eigenfunction, generalized Laplace transform, characteristic function, generalized shift operator, generalized convolution operator, sequentially sufficient set, uniqueness set
Mots-clés : Vallée Poussin problem.
Mots-clés : Vallée Poussin problem.
@article{TIMM_2014_20_1_a18,
author = {V. V. Napalkov and A. U. Mullabaeva},
title = {On one class of differential operators and their application},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--214},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a18/}
}
TY - JOUR AU - V. V. Napalkov AU - A. U. Mullabaeva TI - On one class of differential operators and their application JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 201 EP - 214 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a18/ LA - ru ID - TIMM_2014_20_1_a18 ER -
V. V. Napalkov; A. U. Mullabaeva. On one class of differential operators and their application. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a18/