Mots-clés : Vallée Poussin problem.
@article{TIMM_2014_20_1_a18,
author = {V. V. Napalkov and A. U. Mullabaeva},
title = {On one class of differential operators and their application},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--214},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a18/}
}
V. V. Napalkov; A. U. Mullabaeva. On one class of differential operators and their application. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a18/
[1] De La Vallee Poussin Ch. J., “Sur l'equation differentielle lineaire du second ordre. Determination d'une integrale par deux valeurs assignees. Extension aux equations d'ordre”, J. Math. Pures Appl., 8 (1929), 125–144 | Zbl
[2] Napalkov V. V., “Kompleksnyi analiz i zadacha Koshi dlya operatorov svertki”, Tr. MIAN, 235, 2001, 165–168 | MR | Zbl
[3] Napalkov V. V., Nuyatov A. A., “Mnogotochechnaya zadacha Valle Pussena dlya operatorov svertki”, Mat. sb., 203:2 (2012), 77–86 | DOI | MR | Zbl
[4] Napalkov V. V., Popenov S. V., “Golomorfnaya zadacha Koshi dlya operatora svertki v analiticheski ravnomernykh prostranstvakh i razlozheniya Fishera”, Dokl. AN, 381:2 (2001), 164–166 | MR | Zbl
[5] Leontev A. F., Obobscheniya ryadov eksponent, Nauka, M., 1981, 320 pp. | MR
[6] Tkachenko V. A., “Spektralnaya teoriya v prostranstvakh analiticheskikh funktsionalov dlya operatorov, porozhdaemykh umnozheniem na nezavisimuyu peremennuyu”, Mat. sb., 112(154):3(7) (1980), 421–466 | MR | Zbl
[7] Napalkov V. V., Mullabaeva A. U., Dilmukhametova A. M., “Obobschenie prostranstva Foka”, Ufim. mat. zhurn., 2:1 (2010), 52–58 | Zbl
[8] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR
[9] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967, 240 pp. | MR
[10] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968, 624 pp. | Zbl
[11] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, 3-e izd., M., 1978, 320 pp. | MR
[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovanykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR
[13] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982, 241 pp. | MR | Zbl
[14] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1985, 336 pp. | MR
[15] Shapiro H. S., “An algebraic theorem of E. Fischer, and the holomorphic Goursat problem”, Bull. London Math. Soc., 21 (1989), 513–537 | DOI | MR | Zbl
[16] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh (F) i (LF)”, Sb. matematika, 2:2 (1958), 77–107
[17] Meril A., Struppa D. C., “Equivalence of Cauchy problems for entire and exponential type functions”, Bull. London Math. Soc., 17 (1985), 469–473 | DOI | MR | Zbl
[18] Epifanov O. V., “O suschestvovanii nepreryvnogo pravogo obratnogo operatora v odnom klasse lokalno vypuklykh prostranstv”, Izv. Severo-Kavkazskogo Nauchnogo tsentra vysshei shkoly. Ser. “Estestvennye nauki”, 1991, no. 3, 3–4 | MR | Zbl