Mots-clés : morphism
@article{TIMM_2014_20_1_a17,
author = {N. V. Nagul},
title = {Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {185--200},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/}
}
TY - JOUR AU - N. V. Nagul TI - Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 185 EP - 200 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/ LA - ru ID - TIMM_2014_20_1_a17 ER -
%0 Journal Article %A N. V. Nagul %T Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics %J Trudy Instituta matematiki i mehaniki %D 2014 %P 185-200 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/ %G ru %F TIMM_2014_20_1_a17
N. V. Nagul. Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/
[1] Burbaki N., Teoriya mnozhestv, Mir, M., 1965, 455 pp.
[2] Vasilev S. N., “Metod predstavimosti v logiko-algebraicheskom podkhode k kachestvennomu analizu dinamicheskikh sistem”, Optimizatsiya, upravlenie, intellekt, 2005, no. 3(11), 248–254
[3] Vasilev S. N., Sintez teorem s VFL v matematicheskoi teorii sistem, Dis. $\dots$ d-ra fiz.-mat. nauk, SO RAN SSSR, Irkutsk, 1988, 326 pp.
[4] Ershov Yu. L., Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996, 300 pp. | MR | Zbl
[5] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977, 614 pp. | MR
[6] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 329 pp. | MR
[7] Maltsev A. I., “Modelnye sootvetstviya”, Izv. AN SSSR. Cer. matematicheskaya, 23:3 (1959), 313–336 | MR
[8] Matrosov V. M., “Metod sravneniya v dinamike sistem. I”, Differents. uravneniya, 10:9 (1974), 1547–1559 ; “II”, Дифференц. уравнения, 11:3 (1975), 403–417 | MR | Zbl | Zbl
[9] Nagul N. V., “Sokhranenie svoistv raspisaniya dvizheniya v odnoi modeli seti obschestvennogo transporta”, Sovremennye tekhnologii, sistemnyi analiz, modelirovanie, 2010, no. 4(28), 150–159
[10] Nagul N. V., “Metod logiko-algebraicheskikh uravnenii v dinamike sistem”, Algebra i analiz, 24:4 (2012), 156–181 | MR | Zbl
[11] Sibirskii K. S., Vvedenie v topologicheskuyu dinamiku, RIO AN MSSR, Kishinev, 1970, 221 pp. | MR
[12] Cassandras C. G., Lafortune S., Introduction to discrete event systems, Springer, New York, 2008, 776 pp. | MR | Zbl
[13] Feferman S., “Applications of many-sorted interpolation theorems”, Proc. of the Tarski Symposium, 25, Amer. Math. Soc., Providence, 1974, 205–224 | DOI | MR
[14] Feferman S., “Harmonious logic: Craig's interpolation theorem and its descendants”, Synthese, 164:3 (2008), 341–357 | DOI | MR | Zbl
[15] Feferman S., “Lectures on proof theory”, Proc. of the Summer School in Logic (Leeds, 1967), Lecture Notes in Math., 70, ed. M. Löb, Springer-Verlag, Berlin, 1968, 1–107 | DOI | MR
[16] Higgins P. J., “Algebras with a sheme of operators”, Math. Nachr., 27:1–2 (1963), 115–132 | DOI | MR | Zbl
[17] Lyndon R. C., “An interpolation theorem in the predicate calculus”, Pacific J. Math., 9 (1959), 129–142 | DOI | MR | Zbl
[18] Lyndon R. C., “Properties preserved under homomorphism”, Pacific J. Math., 9 (1959), 143–154 | DOI | MR | Zbl
[19] Otto M., “An interpolation theorem”, Bull. Symbolic Logic, 6:4 (2000), 447–462 | DOI | MR | Zbl
[20] Rossman B., “Existential positive types and preservation under homomorphisms”, Proc. of the 20th Annual IEEE Symp. on Logic in Comput. Sci., 2005, 467–476