Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 185-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We develop the method of logical algebraic equations, which is a method for constructing preservation conditions for properties of some generalizations of many-sorted algebraic systems under their mappings to each other. Preservation criteria are formulated in terms of the notion of canonical generalization of these mappings to Bourbaki grades. Algorithms that simplify solutions of logical algebraic equations are used to describe classes of formulas preserved under single-type morphisms.
Keywords: preservation of properties, many-sorted algebraic system, logical algebraic equation.
Mots-clés : morphism
@article{TIMM_2014_20_1_a17,
     author = {N. V. Nagul},
     title = {Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {185--200},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/}
}
TY  - JOUR
AU  - N. V. Nagul
TI  - Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 185
EP  - 200
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/
LA  - ru
ID  - TIMM_2014_20_1_a17
ER  - 
%0 Journal Article
%A N. V. Nagul
%T Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 185-200
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/
%G ru
%F TIMM_2014_20_1_a17
N. V. Nagul. Classes of properties preserved under morphisms of generalizations of many-sorted algebraic systems in studying dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a17/

[1] Burbaki N., Teoriya mnozhestv, Mir, M., 1965, 455 pp.

[2] Vasilev S. N., “Metod predstavimosti v logiko-algebraicheskom podkhode k kachestvennomu analizu dinamicheskikh sistem”, Optimizatsiya, upravlenie, intellekt, 2005, no. 3(11), 248–254

[3] Vasilev S. N., Sintez teorem s VFL v matematicheskoi teorii sistem, Dis. $\dots$ d-ra fiz.-mat. nauk, SO RAN SSSR, Irkutsk, 1988, 326 pp.

[4] Ershov Yu. L., Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996, 300 pp. | MR | Zbl

[5] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977, 614 pp. | MR

[6] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 329 pp. | MR

[7] Maltsev A. I., “Modelnye sootvetstviya”, Izv. AN SSSR. Cer. matematicheskaya, 23:3 (1959), 313–336 | MR

[8] Matrosov V. M., “Metod sravneniya v dinamike sistem. I”, Differents. uravneniya, 10:9 (1974), 1547–1559 ; “II”, Дифференц. уравнения, 11:3 (1975), 403–417 | MR | Zbl | Zbl

[9] Nagul N. V., “Sokhranenie svoistv raspisaniya dvizheniya v odnoi modeli seti obschestvennogo transporta”, Sovremennye tekhnologii, sistemnyi analiz, modelirovanie, 2010, no. 4(28), 150–159

[10] Nagul N. V., “Metod logiko-algebraicheskikh uravnenii v dinamike sistem”, Algebra i analiz, 24:4 (2012), 156–181 | MR | Zbl

[11] Sibirskii K. S., Vvedenie v topologicheskuyu dinamiku, RIO AN MSSR, Kishinev, 1970, 221 pp. | MR

[12] Cassandras C. G., Lafortune S., Introduction to discrete event systems, Springer, New York, 2008, 776 pp. | MR | Zbl

[13] Feferman S., “Applications of many-sorted interpolation theorems”, Proc. of the Tarski Symposium, 25, Amer. Math. Soc., Providence, 1974, 205–224 | DOI | MR

[14] Feferman S., “Harmonious logic: Craig's interpolation theorem and its descendants”, Synthese, 164:3 (2008), 341–357 | DOI | MR | Zbl

[15] Feferman S., “Lectures on proof theory”, Proc. of the Summer School in Logic (Leeds, 1967), Lecture Notes in Math., 70, ed. M. Löb, Springer-Verlag, Berlin, 1968, 1–107 | DOI | MR

[16] Higgins P. J., “Algebras with a sheme of operators”, Math. Nachr., 27:1–2 (1963), 115–132 | DOI | MR | Zbl

[17] Lyndon R. C., “An interpolation theorem in the predicate calculus”, Pacific J. Math., 9 (1959), 129–142 | DOI | MR | Zbl

[18] Lyndon R. C., “Properties preserved under homomorphism”, Pacific J. Math., 9 (1959), 143–154 | DOI | MR | Zbl

[19] Otto M., “An interpolation theorem”, Bull. Symbolic Logic, 6:4 (2000), 447–462 | DOI | MR | Zbl

[20] Rossman B., “Existential positive types and preservation under homomorphisms”, Proc. of the 20th Annual IEEE Symp. on Logic in Comput. Sci., 2005, 467–476