On extensions of exceptional strongly regular graphs with eigenvalue~3
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 169-184

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of distance regular graphs in which neighborhoods of vertices are strongly regular graphs with eigenvalue 3 was initiated in Makhnev's previous works. In particular, he reduced these graphs to graphs in which neighborhoods of vertices are exceptional graphs or pseudogeometric graphs for $pG_{s-3}(s,t)$. Makhnev and Paduchikh found parameters of exceptional graphs (see the Proposition). In the present paper, we study amply regular graphs in which neighborhoods of vertices are exceptional strongly regular graphs with eigenvalue 3 and parameters from conditions 3–6 of the Proposition.
Keywords: graph extensions, strongly regular graphs, amply regular graphs, distance regular graphs.
@article{TIMM_2014_20_1_a16,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On extensions of exceptional strongly regular graphs with eigenvalue~3},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {169--184},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a16/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On extensions of exceptional strongly regular graphs with eigenvalue~3
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 169
EP  - 184
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a16/
LA  - ru
ID  - TIMM_2014_20_1_a16
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On extensions of exceptional strongly regular graphs with eigenvalue~3
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 169-184
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a16/
%G ru
%F TIMM_2014_20_1_a16
A. A. Makhnev; D. V. Paduchikh. On extensions of exceptional strongly regular graphs with eigenvalue~3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 169-184. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a16/