On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 156-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group. The spectrum of $G$ is the set $\omega(G)$ of orders of its elements. The subset of prime elements of $\omega(G)$ is denoted by $\pi(G)$. The spectrum $\omega(G)$ of a group $G$ defines its prime graph (or Grünberg–Kegel graph) $\Gamma(G)$ with vertex set $\pi(G)$, in which any two different vertices $r$ and $s$ are adjacent if and only if the number $rs$ belongs to the set $\omega(G)$. We describe all the cases when the prime graphs of a finite simple group and of its proper subgroup coincide.
Keywords: finite group, prime spectrum, maximal subgroup.
Mots-clés : simple group, prime graph (Grünberg–Kegel graph)
@article{TIMM_2014_20_1_a15,
     author = {N. V. Maslova},
     title = {On the coincidence of {Gr\"unberg{\textendash}Kegel} graphs of a~finite simple group and its proper subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--168},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 156
EP  - 168
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/
LA  - ru
ID  - TIMM_2014_20_1_a15
ER  - 
%0 Journal Article
%A N. V. Maslova
%T On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 156-168
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/
%G ru
%F TIMM_2014_20_1_a15
N. V. Maslova. On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 156-168. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/

[1] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[2] Vasilev A. V., Vdovin E. P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[3] Zvezdina M. A., “O neabelevykh prostykh gruppakh s grafom prostykh chisel kak u znakoperemennoi gruppy”, Sib. mat. zhurn., 54:1 (2013), 65–76 | MR | Zbl

[4] Kondratev A. S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.

[5] Kondratev A. S., Khramtsov I. V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 142–159

[6] Kondratev A. S., Khramtsov I. V., “Vpolne privodimost nekotorykh $GF(2)A_7$-modulei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 139–143

[7] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[8] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[9] Bray J. N., Holt D. F., Roney-Dougal C. M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl

[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[11] Estermann T., “On Goldbach's problem: proof that almost all even positive integers are sums of two primes”, Proc. London Math. Soc. Ser. 2, 44 (1938), 307–314 | DOI | MR | Zbl

[12] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys and Monographs, 40.1, 1994 | DOI | MR | Zbl

[13] Hardy G. H., Littlewood J. E., “Some problems of 'partitio numerorum'; III: On the expression of a number as a sum of primes”, Acta Mathematica, 44 (1922), 1–70 | DOI

[14] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990, 303 pp. | MR | Zbl

[15] Liebeck M. W., Praeger C. E., Saxl J., “Transitive subgroups of primitive permutation groups”, J. Algebra, 234 (2000), 291–361 | DOI | MR | Zbl

[16] Oliveira e Silva T., Goldbach conjecture verification, URL: http://sweet.ua.pt/tos/goldbach.html

[17] Weisstein E. W., Goldbach conjecture, From Mathworld-AWolfram web resourse. URL: http://mathworld.wolfram.com/GoldbachConjecture.html

[18] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl

[19] The on-line encyclopedia of integer sequences, URL: https://oeis.org/A002375