On the coincidence of Gr\"unberg--Kegel graphs of a~finite simple group and its proper subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 156-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. The spectrum of $G$ is the set $\omega(G)$ of orders of its elements. The subset of prime elements of $\omega(G)$ is denoted by $\pi(G)$. The spectrum $\omega(G)$ of a group $G$ defines its prime graph (or Grünberg–Kegel graph) $\Gamma(G)$ with vertex set $\pi(G)$, in which any two different vertices $r$ and $s$ are adjacent if and only if the number $rs$ belongs to the set $\omega(G)$. We describe all the cases when the prime graphs of a finite simple group and of its proper subgroup coincide.
Keywords: finite group, prime spectrum, prime graph (Grünberg–Kegel graph), maximal subgroup.
Mots-clés : simple group
@article{TIMM_2014_20_1_a15,
     author = {N. V. Maslova},
     title = {On the coincidence of {Gr\"unberg--Kegel} graphs of a~finite simple group and its proper subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--168},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - On the coincidence of Gr\"unberg--Kegel graphs of a~finite simple group and its proper subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 156
EP  - 168
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/
LA  - ru
ID  - TIMM_2014_20_1_a15
ER  - 
%0 Journal Article
%A N. V. Maslova
%T On the coincidence of Gr\"unberg--Kegel graphs of a~finite simple group and its proper subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 156-168
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/
%G ru
%F TIMM_2014_20_1_a15
N. V. Maslova. On the coincidence of Gr\"unberg--Kegel graphs of a~finite simple group and its proper subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 156-168. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a15/