The compromise principle in many-person differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 148-155
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The concept of compromise set of strategies for a many-person differential game is proposed. The method of its construction in the class of positional strategies is validated. The constructed set of strategies is a compromise set for any initial position from some set in the phase space and possesses the property of dynamic stability. A model example is presented.
Keywords: compromise set of strategies, Nash equilibrium, differential game, stable bridge, extremal aiming.
@article{TIMM_2014_20_1_a14,
     author = {S. V. Lutamanov},
     title = {The compromise principle in many-person differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {148--155},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a14/}
}
TY  - JOUR
AU  - S. V. Lutamanov
TI  - The compromise principle in many-person differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 148
EP  - 155
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a14/
LA  - ru
ID  - TIMM_2014_20_1_a14
ER  - 
%0 Journal Article
%A S. V. Lutamanov
%T The compromise principle in many-person differential games
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 148-155
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a14/
%G ru
%F TIMM_2014_20_1_a14
S. V. Lutamanov. The compromise principle in many-person differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 148-155. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a14/

[1] Kharshani D., Zelten R., Obschaya teoriya vybora ravnovesiya v igrakh, Ekonomicheskaya shkola, SPb., 2001, 405 pp.

[2] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012, 432 pp.

[3] Zhukovskii V. I., Ushakov V. N., Differentsialnye igry so mnogimi uchastnikami: ukaz. lit. za 1984–1989 gg., IMM UrO AN SSSR, Sverdlovsk, 1990, 139 pp.

[4] Zhukovskii V. I., Ukhobotov V. I., Differentsialnye igry so mnogimi uchastnikami: ukaz. lit. za 1989–1994 gg., Chelyab. gos. un-t, Chelyabinsk, 1995, 123 pp. | MR

[5] Buckdahn R., Cardaliaguet P., Quincampoix M., “Some recent aspects of differential game theory”, Dyn. Games Appl., 1:1 (2011), 74–114 | DOI | MR | Zbl

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1973, 455 pp. | MR

[7] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[8] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 180 pp. | MR

[9] Lutmanov S. V., “Neobkhodimye i dostatochnye usloviya ravnovesiya po Neshu v igre v peremescheniyakh”, Problemy mekhaniki i upravleniya: mezhvuz. cb. nauch. tr., 34, Izd-vo Perm. gos. un-ta, Perm, 2002, 4–10

[10] Lutmanov S. V., “Matematicheskaya model kompromissnogo upravleniya v differentsialnoi igre neskolkikh lits”, Izv. In-ta matematiki i informatiki (Izhevsk), 2012, no. 1(39), 86–87

[11] Lutmanov S. V., Chernyshev K. A., “Realizatsiya printsipa kompromissa v lineinykh differentsialnykh igrakh”, Vest. Perm. un-ta. Matematika, Mekhanika, Informatika, 2012, no. 3(11), 42–49