On a degenerate boundary value problem for the porous medium equation in spherical coordinates
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 119-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a degenerate boundary value problem for the porous medium equation in the case of spherical coordinates. The results of this study can be applied to the problem of heat propagation in a neighborhood of a closed spherical surface. For the boundary value problem, we prove the existence and uniqueness theorem for solutions in the class of analytical functions and propose a numerical method for constructing solutions based on the boundary element approach. We use both truncated series and the proposed numerical method to carry out sample computations.
Keywords: porous medium equation, boundary value problem, analytical solution, boundary element method.
@article{TIMM_2014_20_1_a11,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {On a~degenerate boundary value problem for the porous medium equation in spherical coordinates},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--129},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a11/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - On a degenerate boundary value problem for the porous medium equation in spherical coordinates
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 119
EP  - 129
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a11/
LA  - ru
ID  - TIMM_2014_20_1_a11
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T On a degenerate boundary value problem for the porous medium equation in spherical coordinates
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 119-129
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a11/
%G ru
%F TIMM_2014_20_1_a11
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On a degenerate boundary value problem for the porous medium equation in spherical coordinates. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a11/

[1] Zeldovich Ya .B., Kompaneets A. S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sb., posvyasch. 70-letiyu A. F. Ioffe, 1950, 61–71

[2] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972, 220 pp.

[3] Vazquez J. L., The porous medium equation: Mathematical theory, Clarendon Press, Oxford, 2007, 648 pp. | MR | Zbl

[4] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[5] Bautin S. P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 88 pp.

[6] Sidorov A. F., “O nekotorykh analiticheskikh predstavleniyakh reshenii nelineinogo uravneniya nestatsionarnoi filtratsii”, Chislennye metody resheniya zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti, Cb. nauch. tr., ITPM SO RAN AN SSSR, Novosibirsk, 1987, 247–257

[7] Titov S. S., “O dvizhenii fronta nelineinoi diffuzii”, Prikl. mekhanika i tekhn. fizika, 37:4 (1996), 113–118 | MR | Zbl

[8] Kazakov A. L., “Primenenie kharakteristicheskikh ryadov dlya postroeniya reshenii nelineinykh parabolicheskikh uravnenii i sistem s vyrozhdeniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 114–122

[9] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Modelling, 37:10–11 (2013), 6918–6928 | DOI | MR

[10] Brebbiya K., Teles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987, 524 pp. | MR