@article{TIMM_2014_20_1_a10,
author = {V. I. Ivanov and Ha Thi Min Hue},
title = {Generalized {Jackson} inequality in the space $L_2(\mathbb R^d)$ with {Dunkl} weight},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {109--118},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/}
}
TY - JOUR AU - V. I. Ivanov AU - Ha Thi Min Hue TI - Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 109 EP - 118 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/ LA - ru ID - TIMM_2014_20_1_a10 ER -
V. I. Ivanov; Ha Thi Min Hue. Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/
[1] Rösler M., Dunkl Operators: Theory and applications, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl
[2] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl
[3] Khue Kha Tkhi Min, “O svyazi mnogomernykh i odnomernykh konstant Dzheksona v prostranstvakh $L_2$ so stepennymi vesami”, Izv. TulGU. Estestv. nauki, 2012, no. 2, 114–123
[4] Ivanov A. V., Ivanov V. I., Khue Kha Tkhi Min, “Obobschennaya konstanta Dzheksona v prostranstve $L_2(\mathbb R^d)$ s vesom Danklya”, Izv. TulGU. Estestv. nauki, 2013, no. 3, 74–90
[5] Vasilev S. N., “Neravenstvo Dzheksona v $L_2(\mathbb{R}^N)$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 93–99
[6] Ibragimov N. I., Nasibov V. G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl
[7] Popov V. Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matematika, 1972, no. 6, 65–73 | MR | Zbl
[8] Popov V. Yu., “O tochnykh konstantakh v neravenstvakh Dzheksona dlya nailuchshikh sfericheskikh srednekvadratichnykh priblizhenii”, Izv. vuzov. Matematika, 1981, no. 12, 67–78 | MR | Zbl
[9] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R^m)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 183–198 | Zbl
[10] Moskovskii A. V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Matematika. Mekhanika. Informatika, 4:1 (1997), 44–70 | MR
[11] Ivanov A. V., “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestv. nauki, 2011, no. 2, 29–58
[12] Ivanov A. V., “Nekotorye ekstremalnye zadachi dlya tselykh funktsii v vesovykh prostranstvakh”, Izv. TulGU. Estestv. nauki, 2010, no. 1, 26–44
[13] Ivanov A. V., Ivanov V. I., “Teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 88:1 (2010), 148–151 | DOI | MR | Zbl
[14] Ivanov A. V., Ivanov V. I., “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 180–192
[15] Ivanov A. V., Ivanov V. I., “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | DOI | Zbl
[16] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 672 pp. | MR | Zbl
[17] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.
[18] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl
[19] Yudin V. A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl
[20] Vasilev S. N., “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl