Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A generalized modulus of continuity is defined in the space $L_2(\mathbb R^d)$ with Dunkl weight by means of an arbitrary zero-sum sequence of complex numbers. A sharp generalized Jackson inequality is proved for this modulus and the best approximations by entire functions of exponential spherical type. This inequality was earlier proved by S. N. Vasil'ev in the weightless case.
Keywords: root system, reflection group, Dunkl weight, Dunkl transform, best approximation, modulus of continuity, Jackson inequality.
@article{TIMM_2014_20_1_a10,
     author = {V. I. Ivanov and Ha Thi Min Hue},
     title = {Generalized {Jackson} inequality in the space $L_2(\mathbb R^d)$ with {Dunkl} weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--118},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - Ha Thi Min Hue
TI  - Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 109
EP  - 118
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/
LA  - ru
ID  - TIMM_2014_20_1_a10
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A Ha Thi Min Hue
%T Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 109-118
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/
%G ru
%F TIMM_2014_20_1_a10
V. I. Ivanov; Ha Thi Min Hue. Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a10/

[1] Rösler M., Dunkl Operators: Theory and applications, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl

[2] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl

[3] Khue Kha Tkhi Min, “O svyazi mnogomernykh i odnomernykh konstant Dzheksona v prostranstvakh $L_2$ so stepennymi vesami”, Izv. TulGU. Estestv. nauki, 2012, no. 2, 114–123

[4] Ivanov A. V., Ivanov V. I., Khue Kha Tkhi Min, “Obobschennaya konstanta Dzheksona v prostranstve $L_2(\mathbb R^d)$ s vesom Danklya”, Izv. TulGU. Estestv. nauki, 2013, no. 3, 74–90

[5] Vasilev S. N., “Neravenstvo Dzheksona v $L_2(\mathbb{R}^N)$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 93–99

[6] Ibragimov N. I., Nasibov V. G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[7] Popov V. Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matematika, 1972, no. 6, 65–73 | MR | Zbl

[8] Popov V. Yu., “O tochnykh konstantakh v neravenstvakh Dzheksona dlya nailuchshikh sfericheskikh srednekvadratichnykh priblizhenii”, Izv. vuzov. Matematika, 1981, no. 12, 67–78 | MR | Zbl

[9] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R^m)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 183–198 | Zbl

[10] Moskovskii A. V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Matematika. Mekhanika. Informatika, 4:1 (1997), 44–70 | MR

[11] Ivanov A. V., “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestv. nauki, 2011, no. 2, 29–58

[12] Ivanov A. V., “Nekotorye ekstremalnye zadachi dlya tselykh funktsii v vesovykh prostranstvakh”, Izv. TulGU. Estestv. nauki, 2010, no. 1, 26–44

[13] Ivanov A. V., Ivanov V. I., “Teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 88:1 (2010), 148–151 | DOI | MR | Zbl

[14] Ivanov A. V., Ivanov V. I., “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 180–192

[15] Ivanov A. V., Ivanov V. I., “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | DOI | Zbl

[16] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 672 pp. | MR | Zbl

[17] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[18] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl

[19] Yudin V. A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl

[20] Vasilev S. N., “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl