Computation of Lyapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 95-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method of computing Lyapunov–Krasovskii quadratic functionals is proposed for linear autonomous systems with aftereffect. The finding of their representations is reduced to solving boundary value problems for functional differential equations. The cases of their equivalence to boundary value problems for systems of ordinary differential equations are considered.
Keywords: differential equations with aftereffect, stability, quadratic functionals.
@article{TIMM_2013_19_4_a9,
     author = {Yu. F. Dolgii},
     title = {Computation of {Lyapunov{\textendash}Krasovskii} quadratic functionals for linear autonomous systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--106},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a9/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Computation of Lyapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 95
EP  - 106
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a9/
LA  - ru
ID  - TIMM_2013_19_4_a9
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Computation of Lyapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 95-106
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a9/
%G ru
%F TIMM_2013_19_4_a9
Yu. F. Dolgii. Computation of Lyapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 95-106. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a9/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp.

[2] Krasovskii N. N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26:3 (1962), 39–51 | MR | Zbl

[3] Tsarkov E. F., Engelson L. E., “O statisticheskikh resheniyakh lineinykh sistem differentsialno-funktsionalnykh uravnenii”, Topologicheskie prostranstva i ikh otobrazheniya, Latv. gos. un-ta, Riga, 1983, 117–136

[4] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp.

[5] Kim A. V., i-Gladkii analiz i funktsionalno-differentsialnye uravneniya, Izd-vo UrO RAN, Ekaterinburg, 1996, 234 pp.

[6] Infante E. F., Castelan W. B., “A Lyapunov functional for a matrix difference-differential equation”, J. Differential Equations, 29:3 (1978), 439–451 | DOI | MR | Zbl

[7] de Oliveira J. C. F., Carvalho L. A. V., “A Lyapunov functional for a retarded differential equation”, SIAM. J. Math. Anal, 16:6 (1985), 1295–1305 | DOI | MR | Zbl

[8] Castelan W. B., “A Lyapunov functional for a matrix retarded difference-differential equation with several delay”, Lect. Notes in Math., 799, Springer, Berlin, 1980, 82–118 | DOI | MR

[9] Delfour M. C., McCalla C., Mitter S. K., “Stability and the infinite-time quadratic cost problem for linear hereditary differential systems”, SIAM J. Control, 13:1 (1975), 48–88 | DOI | MR | Zbl

[10] Datko R., “Extending a theorem of A. M. Liapunov to Hilbert space”, J. Math. Appl., 32:3 (1970), 610–616 | MR | Zbl

[11] Burton T. A., Stability and periodic solutions of ordinary and functional differential equations, Acad. Press, Orlando, 1985, 342 pp. | MR

[12] Shimanov S. N., “Kriticheskii sluchai pary chisto mnimykh kornei dlya sistem s posledeistviem”, Sib. mat. zhurn., 2:3 (1961), 467–480 | MR | Zbl

[13] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | MR | Zbl

[14] Markushin E. M., Shimanov S. N., “Priblizhennoe reshenie zadachi analiticheskogo konstruirovaniya regulyatora dlya uravneniya s zapazdyvaniem”, Differents. uravneniya, 2:8 (1966), 1018–1026 | MR

[15] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl

[16] Krasovskii N. N., Osipov Yu. S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1963, no. 6, 3–15

[17] Datko R., “A linear control problem in an abstract Hilbert space”, J. Differential Equations, 9:2 (1971), 346–359 | DOI | MR | Zbl

[18] Gibson J. S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:52 (1983), 95–135 | DOI | MR

[19] Markushin E. M., “O vychislenii kvadratichnykh funktsionalov dlya sistem s zapazdyvaniem vremeni”, Differents. uravneniya, 7:2 (1971), 369–370 | MR | Zbl

[20] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp.

[21] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differents. uravneniya, 1:1 (1965), 102–116 | MR | Zbl

[22] Repin Yu. M., “Kvadratichnye funktsionaly Lyapunova dlya sistem s zapazdyvaniem”, Prikl. matematika i mekhanika, 29:3 (1965), 564–566 | MR | Zbl

[23] Dolgii Yu. F., “Kharakteristicheskoe uravnenie v zadache ustoichivosti periodicheskikh sistem s posledeistviem”, Izv. Ural. gos. un-ta. Matematika i mekhanika. Vyp. 1, 1998, no. 10, 34–43

[24] Milshtein G. N., “Kvadratichnye funktsionaly Lyapunova dlya sistem s posledeistviem”, Differents. uravneniya, 17:6 (1981), 984–993 | MR | Zbl

[25] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, 544 pp.

[26] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 403 pp.

[27] Dolgii Yu. F., “Kvadratichnye funktsionaly Lyapunova–Krasovskogo dlya lineinykh avtonomnykh sistem s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 48–56 | MR

[28] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 535 pp.

[29] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.

[30] Baskakov A. G., Vorobev A. A., Romanova M. Yu., “Giperbolicheskie polugruppy operatorov i uravnenie Lyapunova”, Mat. zametki, 89:2 (2011), 190–203 | DOI | MR | Zbl

[31] Wenzhang N., “Generalization of Liapunov's theorem in a linear delay system”, J. Math. Anal. Appl., 142 (1989), 83–94 | DOI | MR | Zbl

[32] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, GITTL, M.–L., 1952, 232 pp.