@article{TIMM_2013_19_4_a7,
author = {M. I. Gusev},
title = {Internal approximations of reachable sets of control systems with state constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {73--88},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/}
}
M. I. Gusev. Internal approximations of reachable sets of control systems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 73-88. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/
[1] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control. SCFA, Birkhauser, Boston, 1997, 321 pp. | MR
[2] Lotov A. V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl
[3] Matviichuk A. R., Ushakov V. N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR
[4] Kurzhanski A. B., Mitchell I. M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, J. Optim. Theory Appl., 128:3 (2006), 499–521 | DOI | MR | Zbl
[5] Baier R., Chahma I. A., Lempio F., “Stability and convergence of Euler's method for state-constrained differential inclusions”, SIAM J. Optim., 18:3 (2007), 1004–1026 | DOI | MR | Zbl
[6] Bonneuil N., “Computing reachable sets as capture-viability kernels in reverse time”, Appl. Math., 3 (2012), 1593–1597 | DOI
[7] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl
[8] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51
[9] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR
[10] Kurzhanskii A. B., Filippova T. F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR
[11] Gusev M. I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 81–86 | MR
[12] Forcellini F., Rampazzo F., “On nonconvex differential inclusions whose state is constrained in the closure of an open set”, Differential Integral Equations, 12:4 (1999), 471–497 | MR | Zbl
[13] Frankowska H., Vinter R. B., “Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl., 104:1 (2000), 21–40 | DOI | MR | Zbl
[14] Bettiol P., Bressan A., Vinter R., “On trajectories satisfying a state constraint: $W^{(1,1)}$ estimates and counterexamples”, SIAM J. Control Optim., 48:7 (2010), 4664–4679 | DOI | MR | Zbl
[15] Stern R. J., “Characterization of the state constrained minimal time function”, SIAM J. Control Optim., 43:2 (2004), 697–707 | DOI | MR | Zbl
[16] Clarke F. H., Rifford L., Stern R. J., “Feedback in state constrained optimal control”, ESAIM Control Optim. Calc. Var., 7 (2002), 97–133 | DOI | MR | Zbl
[17] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 271 pp. | MR
[18] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR
[19] Ornelas A., “Parametrization of Caratheodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl