Internal approximations of reachable sets of control systems with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 73-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the approximation problem for reachable sets of a nonlinear control system with state constraints, which are given as the solution set of a nonlinear inequality or a system of inequalities. An analog of the penalty function method is proposed, which consists in replacing the original system with state constraints by an auxiliary system without constraints by means of the restriction of the set of velocities of the original system. This restriction (the right-hand side of the auxiliary system) depends on a scalar penalty coefficient. It is proved that approximating sets converge in the Hausdorff metric to the reachable set of the original system as the penalty coefficient tends to infinity. An estimate of the convergence rate is obtained.
Keywords: control system, reachable set, state constraints, invariance, penalty function method.
@article{TIMM_2013_19_4_a7,
     author = {M. I. Gusev},
     title = {Internal approximations of reachable sets of control systems with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {73--88},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Internal approximations of reachable sets of control systems with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 73
EP  - 88
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/
LA  - ru
ID  - TIMM_2013_19_4_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Internal approximations of reachable sets of control systems with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 73-88
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/
%G ru
%F TIMM_2013_19_4_a7
M. I. Gusev. Internal approximations of reachable sets of control systems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 73-88. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a7/

[1] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control. SCFA, Birkhauser, Boston, 1997, 321 pp. | MR

[2] Lotov A. V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl

[3] Matviichuk A. R., Ushakov V. N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR

[4] Kurzhanski A. B., Mitchell I. M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, J. Optim. Theory Appl., 128:3 (2006), 499–521 | DOI | MR | Zbl

[5] Baier R., Chahma I. A., Lempio F., “Stability and convergence of Euler's method for state-constrained differential inclusions”, SIAM J. Optim., 18:3 (2007), 1004–1026 | DOI | MR | Zbl

[6] Bonneuil N., “Computing reachable sets as capture-viability kernels in reverse time”, Appl. Math., 3 (2012), 1593–1597 | DOI

[7] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[8] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51

[9] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR

[10] Kurzhanskii A. B., Filippova T. F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR

[11] Gusev M. I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 81–86 | MR

[12] Forcellini F., Rampazzo F., “On nonconvex differential inclusions whose state is constrained in the closure of an open set”, Differential Integral Equations, 12:4 (1999), 471–497 | MR | Zbl

[13] Frankowska H., Vinter R. B., “Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl., 104:1 (2000), 21–40 | DOI | MR | Zbl

[14] Bettiol P., Bressan A., Vinter R., “On trajectories satisfying a state constraint: $W^{(1,1)}$ estimates and counterexamples”, SIAM J. Control Optim., 48:7 (2010), 4664–4679 | DOI | MR | Zbl

[15] Stern R. J., “Characterization of the state constrained minimal time function”, SIAM J. Control Optim., 43:2 (2004), 697–707 | DOI | MR | Zbl

[16] Clarke F. H., Rifford L., Stern R. J., “Feedback in state constrained optimal control”, ESAIM Control Optim. Calc. Var., 7 (2002), 97–133 | DOI | MR | Zbl

[17] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 271 pp. | MR

[18] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR

[19] Ornelas A., “Parametrization of Caratheodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl