Widths of some functional classes in the space $L_2$ on a period
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 42-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a space of periodic functions with mean-square norm, we find the values of widths for some functional classes given by means of a modulus of continuity generated by an arbitrary difference operator and a weight function.
Keywords: Jackson inequality; generalized modulus of continuity; widths of functional classes.
@article{TIMM_2013_19_4_a4,
     author = {S. N. Vasil'ev},
     title = {Widths of some functional classes in the space $L_2$ on a period},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {42--47},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a4/}
}
TY  - JOUR
AU  - S. N. Vasil'ev
TI  - Widths of some functional classes in the space $L_2$ on a period
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 42
EP  - 47
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a4/
LA  - ru
ID  - TIMM_2013_19_4_a4
ER  - 
%0 Journal Article
%A S. N. Vasil'ev
%T Widths of some functional classes in the space $L_2$ on a period
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 42-47
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a4/
%G ru
%F TIMM_2013_19_4_a4
S. N. Vasil'ev. Widths of some functional classes in the space $L_2$ on a period. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 42-47. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a4/

[1] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl

[2] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Mat. zametki, 2:5 (1967), 513–522 | MR | Zbl

[3] Taikov L. V., “Strukturnye i konstruktivnye kharakteristiki funktsii iz $L_2$”, Mat. zametki, 25:2 (1979), 217–223 | MR | Zbl

[4] Ligun A. A., “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Mat. zametki, 24:6 (1978), 785–792 | MR | Zbl

[5] Shalaev V. V., “O poperechnikakh v $L_2$ klassov differentsiruemykh funktsii opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. mat. zhurn., 43:1 (1991), 125–129 | MR | Zbl

[6] Esmaganbetov M. G., “Poperechniki klassov iz $L_2[0,\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Mat. zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl

[7] Baraboshkina N. A., “The Jackson-Stechkin inequality with a nonclassic modulus of continuity”, Proc. Steklov Inst. Math., 2001, S65–S70 | MR | Zbl

[8] Vakarchuk S. B., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Mat. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[9] Fejer L., “Lebesguesche Konstanten und divergente Fourierreihen”, J. Reine und Angew. Math., 138 (1910), 22–53 | MR | Zbl

[10] Vasilev S. N., “Tochnoe neravenstvo Dzheksona–Stechkina v $L_2$ s modulem nepreryvnosti, porozhdennym proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN, 385:1 (2002), 11–14 | MR

[11] Vasilev S. N., “Neravenstvo Dzheksona V $L_2({\mathbb R ^N})$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 93–99

[12] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3 (1960), 81–120 | MR | Zbl