@article{TIMM_2013_19_4_a3,
author = {D. S. Bykov},
title = {Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {32--41},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/}
}
TY - JOUR AU - D. S. Bykov TI - Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 32 EP - 41 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/ LA - ru ID - TIMM_2013_19_4_a3 ER -
D. S. Bykov. Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 32-41. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/
[1] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28 (1964), 716–724 | MR
[2] Gibson J. S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control and Optimization, 21:1 (1983), 95–139 | DOI | MR | Zbl
[3] Salamon D., “Structure and stability of finite dimensional approximations for functional differential equations”, SIAM J. Control and Optimization, 23:6 (1984), 928–951 | DOI | MR
[4] Kappel F., Salamon D., “Splines approximation for retarted systems and the Riccati equation”, SIAM J. Control and Optimization, 25:4 (1987), 1082–1117 | DOI | MR | Zbl
[5] Ito K., Kappel F., “A uniformly differentiable approximation scheme for delay systems using splines”, SIAM J. Applied Math. and Optimization, 23 (1991), 217–262 | DOI | MR | Zbl
[6] Lasiecka I., Manitius A., “Differentiability and convergence rates of approximating semigroups for retarded functional differential equations”, SIAM J. Numerical Anal., 25:4 (1988), 883–907 | DOI | MR | Zbl
[7] Propst G., “Piecewise linear approximation for hereditary control problems”, SIAM J. Control and Optimization, 28:1 (1990), 70–96 | DOI | MR
[8] Ito K., Teglas R., “Legendre-tau approximations for functional differential equations”, SIAM J. Control and Optimization, 28:4 (1986), 737–759 | DOI | MR
[9] Ito K., Teglas R., “Legendre-tau approximation for functional differential equations Part II: The linear quadratic optimal control problem”, SIAM J. Control and Optimization, 25:6 (1987), 1379–1408 | DOI | MR | Zbl
[10] Bykov D. S., Dolgii Yu. F., “Otsenka tochnosti approksimatsii optimalnogo stabiliziruyuschego upravleniya sistemy s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 38–47
[11] Bykov D. S., Asimptoticheskaya otsenka tochnosti approksimatsii optimalnogo stabiliziruyuschego upravleniya sistemy differentsialnykh uravnenii s zapazdyvaniem, Dep. v VINITI 03.05.12, No 206-V1012, IMM UrO RAN, 50 pp.
[12] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR
[13] Curtain R., “The infinite-dimensional Riccati equation with applications to affine hereditary differential systems”, SIAM J. Control and Optimization, 13:6 (1975), 1130–1144 | MR
[14] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Dopolnenie 4: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 475–514 | MR
[15] Kalman R. E., “Contributions to the theory of optimal control”, Bol. Soc. Mat. Mexicana (2), 5 (1961), 102–119 | MR
[16] Kroller M., Kunisch K., “Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations”, SIAM J. Numerical Anal., 28:5 (1991), 1350–1385 | DOI | MR | Zbl