Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 32-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of averaging approximations is used for solving the problem of finding an optimal control in a system of delay differential equations on a finite time interval. The method allows to approximate the solution of the problem by optimal controls in systems of ordinary differential equations. The rate of convergence of approximating controls to the optimal control is found.
Keywords: delay differential equations; optimal control; functional phase space; finite-dimensional approximations.
@article{TIMM_2013_19_4_a3,
     author = {D. S. Bykov},
     title = {Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--41},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/}
}
TY  - JOUR
AU  - D. S. Bykov
TI  - Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 32
EP  - 41
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/
LA  - ru
ID  - TIMM_2013_19_4_a3
ER  - 
%0 Journal Article
%A D. S. Bykov
%T Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 32-41
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/
%G ru
%F TIMM_2013_19_4_a3
D. S. Bykov. Accuracy estimate for approximations of the optimal control in a delay system on a finite time interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 32-41. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a3/

[1] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28 (1964), 716–724 | MR

[2] Gibson J. S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control and Optimization, 21:1 (1983), 95–139 | DOI | MR | Zbl

[3] Salamon D., “Structure and stability of finite dimensional approximations for functional differential equations”, SIAM J. Control and Optimization, 23:6 (1984), 928–951 | DOI | MR

[4] Kappel F., Salamon D., “Splines approximation for retarted systems and the Riccati equation”, SIAM J. Control and Optimization, 25:4 (1987), 1082–1117 | DOI | MR | Zbl

[5] Ito K., Kappel F., “A uniformly differentiable approximation scheme for delay systems using splines”, SIAM J. Applied Math. and Optimization, 23 (1991), 217–262 | DOI | MR | Zbl

[6] Lasiecka I., Manitius A., “Differentiability and convergence rates of approximating semigroups for retarded functional differential equations”, SIAM J. Numerical Anal., 25:4 (1988), 883–907 | DOI | MR | Zbl

[7] Propst G., “Piecewise linear approximation for hereditary control problems”, SIAM J. Control and Optimization, 28:1 (1990), 70–96 | DOI | MR

[8] Ito K., Teglas R., “Legendre-tau approximations for functional differential equations”, SIAM J. Control and Optimization, 28:4 (1986), 737–759 | DOI | MR

[9] Ito K., Teglas R., “Legendre-tau approximation for functional differential equations Part II: The linear quadratic optimal control problem”, SIAM J. Control and Optimization, 25:6 (1987), 1379–1408 | DOI | MR | Zbl

[10] Bykov D. S., Dolgii Yu. F., “Otsenka tochnosti approksimatsii optimalnogo stabiliziruyuschego upravleniya sistemy s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 38–47

[11] Bykov D. S., Asimptoticheskaya otsenka tochnosti approksimatsii optimalnogo stabiliziruyuschego upravleniya sistemy differentsialnykh uravnenii s zapazdyvaniem, Dep. v VINITI 03.05.12, No 206-V1012, IMM UrO RAN, 50 pp.

[12] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR

[13] Curtain R., “The infinite-dimensional Riccati equation with applications to affine hereditary differential systems”, SIAM J. Control and Optimization, 13:6 (1975), 1130–1144 | MR

[14] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Dopolnenie 4: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 475–514 | MR

[15] Kalman R. E., “Contributions to the theory of optimal control”, Bol. Soc. Mat. Mexicana (2), 5 (1961), 102–119 | MR

[16] Kroller M., Kunisch K., “Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations”, SIAM J. Numerical Anal., 28:5 (1991), 1350–1385 | DOI | MR | Zbl