On the question of representation of ultrafilters and their application in extension constructions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 289-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study ultrafilters of widely understood measurable spaces and possibilities of their application as generalized elements in the construction of attraction sets in abstract attainability problems with constraints of asymptotic nature. A class of measurable spaces is specified for which all ultrafilters including free ultrafilters (with empty intersection of all of its sets) are built constructively.
Keywords: measurable space, attraction set, ultrafilter.
@article{TIMM_2013_19_4_a28,
     author = {A. G. Chentsov},
     title = {On the question of representation of ultrafilters and their application in extension constructions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {289--307},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a28/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On the question of representation of ultrafilters and their application in extension constructions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 289
EP  - 307
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a28/
LA  - ru
ID  - TIMM_2013_19_4_a28
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On the question of representation of ultrafilters and their application in extension constructions
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 289-307
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a28/
%G ru
%F TIMM_2013_19_4_a28
A. G. Chentsov. On the question of representation of ultrafilters and their application in extension constructions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 289-307. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a28/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[2] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1975, 230 pp.

[3] Daffin R. Dzh., Beskonechnye programmy. Lineinye neravenstva i smezhnye voprosy, Inostr. lit., M., 1959, 263–267

[4] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp.

[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[6] Skvortsova A. V., Chentsov A. G., “O postroenii asimptoticheskogo analoga puchka traektorii lineinoi sistemy s odnoimpulsnym upravleniem”, Differents. uravneniya, 40:12 (2004), 1645–1657 | MR | Zbl

[7] Chentsov A. G., “Ultrafiltry v konstruktsiyakh mnozhestv prityazheniya: zadacha soblyudeniya ogranichenii asimptoticheskogo kharaktera”, Differents. uravneniya, 47:7 (2011), 1047–1064 | MR | Zbl

[8] Chentsov A. G., “O korrektnosti nekotorykh zadach upravleniya materialnoi tochkoi”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 3, 127–141

[9] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovrem. matematika i ee prilozheniya, 26, AN Gruzii. In-t kibernetiki, 2005, 119–150 | MR

[10] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[11] Chentsov A. G., “K voprosu o predstavlenii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. vuzov. Matematika, 2012, no. 10, 45–59

[12] Chentsov A. G., “K voprosu o strukture mnozhestv prityazheniya v topologicheskom prostranstve”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2012, no. 1(39), 147–150

[13] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 293–311

[14] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[16] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp.

[17] Chentsov A. G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 184–217

[18] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, Izd-vo UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[19] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Inostr. lit., M., 1962, 895 pp.

[20] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[21] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 541 pp.

[22] Chentsov A. G., “Ob odnom predstavlenii rezultatov deistviya priblizhennykh reshenii v zadache s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 225–239 | MR | Zbl

[23] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[24] Chentsov A. G., “K voprosu o predstavlenii ultrafiltrov v proizvedenii izmerimykh prostranstv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 307–319