@article{TIMM_2013_19_4_a27,
author = {E. N. Khailov and E. V. Grigorieva},
title = {On the extensibility of solutions of nonautonomous quadratic differential systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {279--288},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/}
}
TY - JOUR AU - E. N. Khailov AU - E. V. Grigorieva TI - On the extensibility of solutions of nonautonomous quadratic differential systems JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 279 EP - 288 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/ LA - ru ID - TIMM_2013_19_4_a27 ER -
E. N. Khailov; E. V. Grigorieva. On the extensibility of solutions of nonautonomous quadratic differential systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 279-288. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp.
[2] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[3] Dmitruk A. V., “A generalized estimate on the number of zeros for solutions of a class of linear differential equations”, SIAM J. Control Optim., 30:5 (1992), 1087–1091 | DOI | MR | Zbl
[4] Grigorieva E. V., Khailov E. N., “Attainable set of a nonlinear controlled microeconomic model”, J. Dyn. Control Syst., 11:2 (2005), 157–176 | DOI | MR | Zbl
[5] Baris Ya. S., Baris P. Ya., Rukhlevich B., “O vzryvnykh resheniyakh neavtonomnykh kvadratichnykh differentsialnykh sistem”, Differents. uravneniya, 42:3 (2006), 302–307 | MR | Zbl
[6] Baris Ya., Baris P., Rukhlevich B., “Razrushayuschiesya resheniya kvadratichnykh sistem differentsialnykh uravnenii”, Sovremennaya matematika. Fundamentalnye napravleniya, 15, 2006, 29–35 | MR
[7] Lankaster P., Teoriya matrits, Nauka, M., 1982, 272 pp.
[8] Khartman F., Obyknovennye differentsialnye uravneniya, Nauka, M., 1970, 720 pp.
[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp.
[10] Szarski J., Differential inequalities, Polish Scientific Publishers, Warszawa, 1965, 256 pp. | MR | Zbl
[11] Grigorieva E. V., Bondarenko N. V., Khailov E. N., Korobeinikov A., “Three-dimensional nonlinear control model of wastewater biotreatment”, Neural, Parallel, and Scientific Computations, 20:1 (2012), 23–36 | MR
[12] Grigorieva E. V., Bondarenko N. V., Khailov E. N., Korobeinikov A., “Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion”, Industrial Waste, eds. K. Y. Show, X. Guo, InTech, Croatia, 2012, 91–120
[13] Bondarenko N. V., Grigoreva E. V., Khailov E. N., “Zadachi minimizatsii zagryaznenii v matematicheskoi modeli biologicheskoi ochistki stochnykh vod”, Zhurn. vychisl. matematiki i mat. fiziki, 52:4 (2012), 614–627 | Zbl
[14] Bondarenko N. V., Grigoreva E. V., Khailov E. N., “Nekotorye zadachi optimalnogo upravleniya protsessom biologicheskoi ochistki stochnykh vod”, sb. nauch. tr. f-ta VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, MAKS Press, M., 2012, 25–44 | MR
[15] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001, 320 pp.
[16] Krasnov K. S., Vorobev N. K., Godnev I. N. i dr., Fizicheskaya khimiya, v. 2, Elektrokhimiya. Khimicheskaya kinetika i kataliz, Vysshaya shkola, M., 2001, 319 pp.