On the extensibility of solutions of nonautonomous quadratic differential systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 279-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The extensibility of solutions of a nonautonomous quadratic differential system is considered. Sufficient conditions are established for the existence of solutions of the system on a given closed interval. Corresponding examples of the Riccati equation are presented. The results are applied for the estimation of the number of switchings of piecewise constant controls corresponding to boundary points of the attainable set of a nonlinear control system that describes a two-stage process of a biological treatment of sewage.
Keywords: nonautonomous quadratic differential system, extensibility of solutions, differential inequality, Chaplygin's theorem.
@article{TIMM_2013_19_4_a27,
     author = {E. N. Khailov and E. V. Grigorieva},
     title = {On the extensibility of solutions of nonautonomous quadratic differential systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {279--288},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/}
}
TY  - JOUR
AU  - E. N. Khailov
AU  - E. V. Grigorieva
TI  - On the extensibility of solutions of nonautonomous quadratic differential systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 279
EP  - 288
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/
LA  - ru
ID  - TIMM_2013_19_4_a27
ER  - 
%0 Journal Article
%A E. N. Khailov
%A E. V. Grigorieva
%T On the extensibility of solutions of nonautonomous quadratic differential systems
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 279-288
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/
%G ru
%F TIMM_2013_19_4_a27
E. N. Khailov; E. V. Grigorieva. On the extensibility of solutions of nonautonomous quadratic differential systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 279-288. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a27/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp.

[2] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[3] Dmitruk A. V., “A generalized estimate on the number of zeros for solutions of a class of linear differential equations”, SIAM J. Control Optim., 30:5 (1992), 1087–1091 | DOI | MR | Zbl

[4] Grigorieva E. V., Khailov E. N., “Attainable set of a nonlinear controlled microeconomic model”, J. Dyn. Control Syst., 11:2 (2005), 157–176 | DOI | MR | Zbl

[5] Baris Ya. S., Baris P. Ya., Rukhlevich B., “O vzryvnykh resheniyakh neavtonomnykh kvadratichnykh differentsialnykh sistem”, Differents. uravneniya, 42:3 (2006), 302–307 | MR | Zbl

[6] Baris Ya., Baris P., Rukhlevich B., “Razrushayuschiesya resheniya kvadratichnykh sistem differentsialnykh uravnenii”, Sovremennaya matematika. Fundamentalnye napravleniya, 15, 2006, 29–35 | MR

[7] Lankaster P., Teoriya matrits, Nauka, M., 1982, 272 pp.

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Nauka, M., 1970, 720 pp.

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp.

[10] Szarski J., Differential inequalities, Polish Scientific Publishers, Warszawa, 1965, 256 pp. | MR | Zbl

[11] Grigorieva E. V., Bondarenko N. V., Khailov E. N., Korobeinikov A., “Three-dimensional nonlinear control model of wastewater biotreatment”, Neural, Parallel, and Scientific Computations, 20:1 (2012), 23–36 | MR

[12] Grigorieva E. V., Bondarenko N. V., Khailov E. N., Korobeinikov A., “Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion”, Industrial Waste, eds. K. Y. Show, X. Guo, InTech, Croatia, 2012, 91–120

[13] Bondarenko N. V., Grigoreva E. V., Khailov E. N., “Zadachi minimizatsii zagryaznenii v matematicheskoi modeli biologicheskoi ochistki stochnykh vod”, Zhurn. vychisl. matematiki i mat. fiziki, 52:4 (2012), 614–627 | Zbl

[14] Bondarenko N. V., Grigoreva E. V., Khailov E. N., “Nekotorye zadachi optimalnogo upravleniya protsessom biologicheskoi ochistki stochnykh vod”, sb. nauch. tr. f-ta VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, MAKS Press, M., 2012, 25–44 | MR

[15] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001, 320 pp.

[16] Krasnov K. S., Vorobev N. K., Godnev I. N. i dr., Fizicheskaya khimiya, v. 2, Elektrokhimiya. Khimicheskaya kinetika i kataliz, Vysshaya shkola, M., 2001, 319 pp.