Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 267-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Methods from the theory of degenerate semigroups of operators are used to prove the local existence and uniqueness of solutions to the Cauchy and Showalter problems for some new classes of semilinear first-order differential equations in a Banach space with degenerate operator at the derivative and nonstationary nonlinear operator at the required function. The obtained general results are used in the investigation of solvability of initial-boundary value problems for a class of systems of equations of generalized hydrodynamic type including Oskolkov's system of equations for the dynamics of viscoelastic fluid and its complicated versions, for example, with nonstationary nonlinearity, with nonlinear viscosity, weighted systems, etc.
Keywords: semilinear degenerate evolution equation, Oskolkov’s system of equations, nonlinear viscosity, weighted equation.
Mots-clés : Sobolev type equation
@article{TIMM_2013_19_4_a26,
     author = {V. E. Fedorov and P. N. Davydov},
     title = {Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--278},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - P. N. Davydov
TI  - Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 267
EP  - 278
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/
LA  - ru
ID  - TIMM_2013_19_4_a26
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A P. N. Davydov
%T Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 267-278
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/
%G ru
%F TIMM_2013_19_4_a26
V. E. Fedorov; P. N. Davydov. Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 267-278. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/

[1] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, N. Y., 1983, 279 pp. | MR | Zbl

[2] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR

[3] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publisher, Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl

[4] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp.

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. literatury, M., 1961, 204 pp.

[7] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR, 179, 1988, 126–164 | MR

[8] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 438 pp. | MR | Zbl

[9] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovremennaya matematika. Fundamentalnye napravleniya, 31, 2009, 3–144 | MR

[10] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniyakh, Librokom, M., 2010, 240 pp.

[11] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravneniya tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Mat. zametki, 65:1 (1999), 70–75 | DOI | MR | Zbl

[12] Kaikina E. I., Naumkin P. I., Shishmarëv I. A., “Zadacha Koshi dlya uravneniya tipa Soboleva so stepennoi nelineinostyu”, Izv. RAN. Ser. matematicheskaya, 69:1 (2005), 61–114 | DOI | MR | Zbl

[13] Sviridyuk G. A., “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, Dokl. AN SSSR, 318:4 (1991), 828–831 | MR | Zbl

[14] Sviridyuk G. A., Sukacheva T. G., “O razreshimosti nestatsionarnoi zadachi dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Mat. zametki, 63:3 (1998), 442–450 | DOI | MR | Zbl

[15] Fedorov V. E., “Local solvability of a class of nonstationary semilinear Sobolev type equations”, Nonlinear Evolution Equations and Mathematical Modeling, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2008, 46–61

[16] Fëdorov V. E., “Nekvazistatsionarnye traektorii odnogo klassa polulineinykh uravnenii sobolevskogo tipa”, Differentsialnye uravneniya i smezhnye problemy, Tr. Mezhdunar. nauch. konf., Gilem, Ufa, 2008, 111–115

[17] Fëdorov V. E., Davydov P. N., “Globalnaya razreshimost nekotorykh polulineinykh uravnenii sobolevskogo tipa”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2010, no. 23 (204), vyp. 12, 80–87 | MR

[18] Fëdorov V. E., Davydov P. N., “O nelokalnykh resheniyakh polulineinykh uravnenii sobolevskogo tipa”, Differents. uravneniya, 49:3 (2013), 338–347 | Zbl

[19] Davydov P. N., Fëdorov V. E., “Lokalnaya razreshimost odnogo klassa uravnenii sobolevskogo tipa”, Tr. Voronezh. zim. mat. shk. S. G. Kreina, Izd-vo VGU, Voronezh, 2010, 47–53