Mots-clés : Sobolev type equation
@article{TIMM_2013_19_4_a26,
author = {V. E. Fedorov and P. N. Davydov},
title = {Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {267--278},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/}
}
TY - JOUR AU - V. E. Fedorov AU - P. N. Davydov TI - Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 267 EP - 278 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/ LA - ru ID - TIMM_2013_19_4_a26 ER -
V. E. Fedorov; P. N. Davydov. Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 267-278. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/
[1] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, N. Y., 1983, 279 pp. | MR | Zbl
[2] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR
[3] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publisher, Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl
[4] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl
[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp.
[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. literatury, M., 1961, 204 pp.
[7] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR, 179, 1988, 126–164 | MR
[8] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 438 pp. | MR | Zbl
[9] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovremennaya matematika. Fundamentalnye napravleniya, 31, 2009, 3–144 | MR
[10] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniyakh, Librokom, M., 2010, 240 pp.
[11] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravneniya tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Mat. zametki, 65:1 (1999), 70–75 | DOI | MR | Zbl
[12] Kaikina E. I., Naumkin P. I., Shishmarëv I. A., “Zadacha Koshi dlya uravneniya tipa Soboleva so stepennoi nelineinostyu”, Izv. RAN. Ser. matematicheskaya, 69:1 (2005), 61–114 | DOI | MR | Zbl
[13] Sviridyuk G. A., “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, Dokl. AN SSSR, 318:4 (1991), 828–831 | MR | Zbl
[14] Sviridyuk G. A., Sukacheva T. G., “O razreshimosti nestatsionarnoi zadachi dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Mat. zametki, 63:3 (1998), 442–450 | DOI | MR | Zbl
[15] Fedorov V. E., “Local solvability of a class of nonstationary semilinear Sobolev type equations”, Nonlinear Evolution Equations and Mathematical Modeling, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2008, 46–61
[16] Fëdorov V. E., “Nekvazistatsionarnye traektorii odnogo klassa polulineinykh uravnenii sobolevskogo tipa”, Differentsialnye uravneniya i smezhnye problemy, Tr. Mezhdunar. nauch. konf., Gilem, Ufa, 2008, 111–115
[17] Fëdorov V. E., Davydov P. N., “Globalnaya razreshimost nekotorykh polulineinykh uravnenii sobolevskogo tipa”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2010, no. 23 (204), vyp. 12, 80–87 | MR
[18] Fëdorov V. E., Davydov P. N., “O nelokalnykh resheniyakh polulineinykh uravnenii sobolevskogo tipa”, Differents. uravneniya, 49:3 (2013), 338–347 | Zbl
[19] Davydov P. N., Fëdorov V. E., “Lokalnaya razreshimost odnogo klassa uravnenii sobolevskogo tipa”, Tr. Voronezh. zim. mat. shk. S. G. Kreina, Izd-vo VGU, Voronezh, 2010, 47–53