Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 267-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Methods from the theory of degenerate semigroups of operators are used to prove the local existence and uniqueness of solutions to the Cauchy and Showalter problems for some new classes of semilinear first-order differential equations in a Banach space with degenerate operator at the derivative and nonstationary nonlinear operator at the required function. The obtained general results are used in the investigation of solvability of initial-boundary value problems for a class of systems of equations of generalized hydrodynamic type including Oskolkov's system of equations for the dynamics of viscoelastic fluid and its complicated versions, for example, with nonstationary nonlinearity, with nonlinear viscosity, weighted systems, etc.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
semilinear degenerate evolution equation, Oskolkov’s system of equations, nonlinear viscosity, weighted equation.
Mots-clés : Sobolev type equation
                    
                  
                
                
                Mots-clés : Sobolev type equation
@article{TIMM_2013_19_4_a26,
     author = {V. E. Fedorov and P. N. Davydov},
     title = {Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--278},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/}
}
                      
                      
                    TY - JOUR AU - V. E. Fedorov AU - P. N. Davydov TI - Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 267 EP - 278 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/ LA - ru ID - TIMM_2013_19_4_a26 ER -
%0 Journal Article %A V. E. Fedorov %A P. N. Davydov %T Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type %J Trudy Instituta matematiki i mehaniki %D 2013 %P 267-278 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/ %G ru %F TIMM_2013_19_4_a26
V. E. Fedorov; P. N. Davydov. Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 267-278. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a26/
