On an optimal control problem for a nonlinear system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 241-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a regional economic growth model described by a system of nonlinear differential equations and pose a problem of finding an optimal control for maximizing the wealth of the region. The problem is analyzed by means of the Pontryagin maximum principle. A numerical solution for a specific region is found, and the results are compared with the basic scenario data of the integrated assessment model MERGE.
Keywords: integrated assessment model for evaluating greenhouse gas reduction policies, optimal control, Pontryagin maximum principle.
@article{TIMM_2013_19_4_a24,
     author = {P. G. Surkov},
     title = {On an optimal control problem for a nonlinear system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--249},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - On an optimal control problem for a nonlinear system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 241
EP  - 249
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/
LA  - ru
ID  - TIMM_2013_19_4_a24
ER  - 
%0 Journal Article
%A P. G. Surkov
%T On an optimal control problem for a nonlinear system
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 241-249
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/
%G ru
%F TIMM_2013_19_4_a24
P. G. Surkov. On an optimal control problem for a nonlinear system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 241-249. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/

[1] Manne A., Mendelson R., Richels R., “MERGE — a Model for evaluating regional and global effects of GHG reduction policies”, Energy Policy, 23:1 (1995), 17–34 | DOI

[2] Manne A., “Energy, the environment and the economy: hedging our bets”, Global Climate Change, New Horizons in Environmental Economics series, ed. J. M. Griffin, Edward Elgar. Publ., Northampton, 2000, 187–203

[3] Digas B., Maksimov V., Schrattenholzer L., On costs and benefits of Russia's participation in the Kyoto protocol, Interim Report IR-09-001, IIASA, Laxenburg, 2009, 34 pp.

[4] Digas B. V., Rozenberg V. L., “Application of an optimisation model to studying some aspects of Russia's economic development”, Int. J. Environmental Policy and Decision Making, 1:1 (2010), 51–63

[5] Rutherford T., “Sequential joint maximization”, Energy and Environmental Policy Modeling, International Series in Operations Research and Management Science, 18, ed. J. P. Weyant, Kluwer Academic Publishers, Norwell, 1999, 139–175 | DOI

[6] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp.

[7] Mikhalevich V. S., Gupal A. M., Norkin V. I., Metody nevypukloi optimizatsii, Nauka, M., 1987, 280 pp.

[8] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp.

[9] Gosudarstvennaya sluzhba statistiki Ukrainy http://www.ukrstat.gov.ua/

[10] International Monetary Fund http://www.imf.org/