On an optimal control problem for a nonlinear system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 241-249

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a regional economic growth model described by a system of nonlinear differential equations and pose a problem of finding an optimal control for maximizing the wealth of the region. The problem is analyzed by means of the Pontryagin maximum principle. A numerical solution for a specific region is found, and the results are compared with the basic scenario data of the integrated assessment model MERGE.
Keywords: integrated assessment model for evaluating greenhouse gas reduction policies, optimal control, Pontryagin maximum principle.
@article{TIMM_2013_19_4_a24,
     author = {P. G. Surkov},
     title = {On an optimal control problem for a nonlinear system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - On an optimal control problem for a nonlinear system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 241
EP  - 249
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/
LA  - ru
ID  - TIMM_2013_19_4_a24
ER  - 
%0 Journal Article
%A P. G. Surkov
%T On an optimal control problem for a nonlinear system
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 241-249
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/
%G ru
%F TIMM_2013_19_4_a24
P. G. Surkov. On an optimal control problem for a nonlinear system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 241-249. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a24/