Voir la notice du chapitre de livre
Mots-clés : perturbation method
@article{TIMM_2013_19_4_a23,
author = {M. I. Sumin},
title = {On the stable sequential {Lagrange} principle in convex programming and its application for solving unstable problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {231--240},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a23/}
}
TY - JOUR AU - M. I. Sumin TI - On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 231 EP - 240 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a23/ LA - ru ID - TIMM_2013_19_4_a23 ER -
%0 Journal Article %A M. I. Sumin %T On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems %J Trudy Instituta matematiki i mehaniki %D 2013 %P 231-240 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a23/ %G ru %F TIMM_2013_19_4_a23
M. I. Sumin. On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 231-240. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a23/
[1] Vasilev F. P., Metody optimizatsii, v 2 kn., MTsNMO, M., 2011, 1056 pp.
[2] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl
[3] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorod. gos. un-ta, N. Novgorod, 2009, 289 pp.
[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl
[5] Sumin M. I., “On the stable sequential Kuhn-Tucker theorem and its applications”, Appl. Math., 3:10A, Special iss. “Optimization” (2012), 1334–1350 | DOI
[6] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.
[7] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp.
[8] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 44:11 (2004), 2001–2019 | MR | Zbl
[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.
[10] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | Zbl