On the unimprovability of full memory strategies in the risk minimization problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 222-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Methods from the theory of guaranteeing positional control are used to study the risk minimization problem, i.e., the problem of optimal control under dynamic disturbances in a formalization based on the Savage criterion. A control system described by an ordinary differential equation is considered. The values of control actions and disturbance at each moment lie in known compact sets. Realizations of the disturbance are also subject to an unknown functional constraint from a given set of functional constraints. Realizations of the control are formed by full memory positional strategies. The quality functional, which is defined on motions of the control system, is assumed to be continuous on the corresponding space of continuous functions. New conditions that provide the unimprovability of the class of full memory positional strategies under program constraints and $L_2$-compact constraints on the disturbance are presented.
Keywords: full memory strategy, Savage criterion, functionally limited disturbance.
@article{TIMM_2013_19_4_a22,
     author = {D. A. Serkov},
     title = {On the unimprovability of full memory strategies in the risk minimization problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--230},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a22/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On the unimprovability of full memory strategies in the risk minimization problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 222
EP  - 230
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a22/
LA  - ru
ID  - TIMM_2013_19_4_a22
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On the unimprovability of full memory strategies in the risk minimization problem
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 222-230
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a22/
%G ru
%F TIMM_2013_19_4_a22
D. A. Serkov. On the unimprovability of full memory strategies in the risk minimization problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 222-230. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a22/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[3] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp.

[4] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp.

[5] Barabanova N. N., Subbotin A. I., Prikl. matematika i mekhanika, 34:5 (1970), 796–803 | MR | Zbl

[6] Barabanova N. N., Subbotin A. I., Prikl. matematika i mekhanika, 35:3 (1971), 385–392 | MR | Zbl

[7] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full-memory strategies”, Constantin Caratheodory: An International Tribute, v. I, II, ed. T. M. Rassias, World Sci. Publ, Teaneck, N. J., 1991, 636–675 | DOI | MR

[8] Niehans J., “Zur Preisbildung bei ungewissen Erwartungen”, Scbweizerische Zietschrift fur Volkswirtschaft und Statistik, 84:5 (1948)

[9] Savage L. J., “The theory of statistical decision”, J. Amer. Stat. Association, 1951, no. 46, 55–67 | DOI | Zbl

[10] Kryazhimskii A. V., Osipov Yu. S., “O pozitsionnom modelirovanii upravleniya v dinamicheskikh sistemakh”, Izv. AN SSSR: Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[11] Osipov Yu. S., Krayzhimskii A. V., Inverse problem of ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[12] Serkov D. A., “Optimalnoe po risku upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Mat. teoriya igr i ee prilozheniya, 5:1 (2013), 74–103 | Zbl

[13] Serkov D. A., “Optimizatsiya garantirovannogo rezultata pri funktsionalnykh ogranicheniyakh na dinamicheskuyu pomekhu”, Dokl. AN, 450:3 (2013), 274–278 | DOI | MR

[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.