Factorization of the reaction-diffusion equation, the wave equation, and other equations
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 203-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate equations of the form $D_{t}u = \Delta u + \xi\nabla u$ for an unknown function $u(t,x)$, $t\in\mathbb R$, $x\in X$, where $D_t u = a_0(u,t)+\sum_{k=1}^r a_k(t,u)\partial_t^k u$, $\Delta$ is the Laplace–Beltrami operator on a Riemannian manifold $X$, and $\xi$ is a smooth vector field on $X$. More exactly, we study morphisms from this equation within the category $\mathcal{PDE}$ of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form —  the so-called  
                  geometric morphisms, which are given by mappings of $X$ to other smooth manifolds (of the same or smaller dimension). 
It is shown that a mapping $f\colon X\to Y$ defines a morphism from the equation $D_{t}u = \Delta u + \xi\nabla u$ if and only if, for some vector field $\Xi$ and a metric on $Y$, the equality $(\Delta+\xi\nabla)f^{\ast}v = f^{\ast}(\Delta + \Xi\nabla)v$ holds for any smooth function $v\colon Y\to\mathbb R$. In this case, the quotient equation is $D_{t}v = \Delta v + \Xi\nabla v$ for the unknown function $v(t,y)$, $y\in Y$. 
It is also shown that, if a mapping $f\colon X\to Y$ is a locally trivial fiber bundle, then $f$ defines a morphism from the equation $D_{t}u = \Delta u$ if and only if fibers of $f$ are parallel and, for any path $\gamma$ on $Y$, the expansion factor of a fiber transferred along the horizontal lift $\gamma$ on $X$ depends on $\gamma$ only.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
category of partial differential equations, heat equation, wave equation.
Mots-clés : reaction–diffusion equation
                    
                  
                
                
                Mots-clés : reaction–diffusion equation
@article{TIMM_2013_19_4_a20,
     author = {M. F. Prokhorova},
     title = {Factorization of the reaction-diffusion equation, the wave equation, and other equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--213},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/}
}
                      
                      
                    TY - JOUR AU - M. F. Prokhorova TI - Factorization of the reaction-diffusion equation, the wave equation, and other equations JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 203 EP - 213 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/ LA - ru ID - TIMM_2013_19_4_a20 ER -
M. F. Prokhorova. Factorization of the reaction-diffusion equation, the wave equation, and other equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 203-213. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/
