Factorization of the reaction-diffusion equation, the wave equation, and other equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 203-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate equations of the form $D_{t}u = \Delta u + \xi\nabla u$ for an unknown function $u(t,x)$, $t\in\mathbb R$, $x\in X$, where $D_t u = a_0(u,t)+\sum_{k=1}^r a_k(t,u)\partial_t^k u$, $\Delta$ is the Laplace–Beltrami operator on a Riemannian manifold $X$, and $\xi$ is a smooth vector field on $X$. More exactly, we study morphisms from this equation within the category $\mathcal{PDE}$ of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form — the so-called geometric morphisms, which are given by mappings of $X$ to other smooth manifolds (of the same or smaller dimension). It is shown that a mapping $f\colon X\to Y$ defines a morphism from the equation $D_{t}u = \Delta u + \xi\nabla u$ if and only if, for some vector field $\Xi$ and a metric on $Y$, the equality $(\Delta+\xi\nabla)f^{\ast}v = f^{\ast}(\Delta + \Xi\nabla)v$ holds for any smooth function $v\colon Y\to\mathbb R$. In this case, the quotient equation is $D_{t}v = \Delta v + \Xi\nabla v$ for the unknown function $v(t,y)$, $y\in Y$. It is also shown that, if a mapping $f\colon X\to Y$ is a locally trivial fiber bundle, then $f$ defines a morphism from the equation $D_{t}u = \Delta u$ if and only if fibers of $f$ are parallel and, for any path $\gamma$ on $Y$, the expansion factor of a fiber transferred along the horizontal lift $\gamma$ on $X$ depends on $\gamma$ only.
Keywords: category of partial differential equations, heat equation, wave equation.
Mots-clés : reaction–diffusion equation
@article{TIMM_2013_19_4_a20,
     author = {M. F. Prokhorova},
     title = {Factorization of the reaction-diffusion equation, the wave equation, and other equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--213},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/}
}
TY  - JOUR
AU  - M. F. Prokhorova
TI  - Factorization of the reaction-diffusion equation, the wave equation, and other equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 203
EP  - 213
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/
LA  - ru
ID  - TIMM_2013_19_4_a20
ER  - 
%0 Journal Article
%A M. F. Prokhorova
%T Factorization of the reaction-diffusion equation, the wave equation, and other equations
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 203-213
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/
%G ru
%F TIMM_2013_19_4_a20
M. F. Prokhorova. Factorization of the reaction-diffusion equation, the wave equation, and other equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 203-213. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a20/

[1] Prokhorova M. F., Faktorizatsiya differentsialnykh uravnenii v chastnykh proizvodnykh: struktura kategorii parabolicheskikh uravnenii, Preprint 10/2005, POMI, SPb., 2005, 24 pp.

[2] Prokhorova M. F., Modelirovanie uravneniya teploprovodnosti i zadachi Stefana, Dep. VINITI 11.02.00, No 347-V00, IMM UrO RAN, 66 pp.

[3] Prokhorova M. F., The structure of the category of parabolic equations, 2009, 33 pp., arXiv: math/0512094v5 [math.AP]

[4] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, L., 1989, 637 pp. | MR | Zbl

[5] Vinogradov A. M., “Geometriya nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. Problemy geometrii, 11, 1980, 89–134 | Zbl

[6] Vinogradov A. M., “Category of nonlinear differential equations”, Global Analysis — Studies and Applications I, Lecture Notes in Math., 1108, eds. Yurii G. Borisovich, Yurii E. Gliklikh, A. M. Vershik, Springer-Verlag, Berlin, 1984, 77–102 | DOI

[7] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997, 464 pp.

[8] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp. | MR

[9] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987, 302 pp. | MR