On a control problem of a nonlinear second-order system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 25-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A control problem for a nonlinear system of second-order differential equations in the presence of uncontrollable effects is investigated. A solution algorithm is proposed in the case when one phase coordinate of the system is measured at discrete moments. The algorithm is stable with respect to information noises and computational errors. Results of a computer experiment are presented.
Keywords: feedback; control; reconstruction.
@article{TIMM_2013_19_4_a2,
     author = {M. S. Blizorukova},
     title = {On a control problem of a nonlinear second-order system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--31},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a2/}
}
TY  - JOUR
AU  - M. S. Blizorukova
TI  - On a control problem of a nonlinear second-order system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 25
EP  - 31
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a2/
LA  - ru
ID  - TIMM_2013_19_4_a2
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%T On a control problem of a nonlinear second-order system
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 25-31
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a2/
%G ru
%F TIMM_2013_19_4_a2
M. S. Blizorukova. On a control problem of a nonlinear second-order system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 25-31. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a2/

[1] Yu. Svirezhev et al., “Optimisation of reduction of global $CO_2$ emission based on a simple model of the carbon cycle”, Environmental Modeling and Assessment, 1999, no. 4, 23–33 | DOI

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 522 pp. | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp. | MR

[4] Patsko V. S., Poverkhnosti pereklyucheniya v lineinykh differentsialnykh igrakh, Preprint, IMM UrO RAN, Ekaterinburg, 2004, 80 pp.

[5] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[6] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[7] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Librokom, M., 2012, 225 pp.