The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 181-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that any finite monoid $S$ on which Green's relations $\mathscr{R}$ and $\mathscr{H}$ coincide divides the monoid of all upper-triangular row-monomial matrices over a finite group. The proof is constructive; given the monoid $S$, the corresponding group and the order of matrices can be effectively found. The obtained result is used to identify the pseudovariety generated by all finite monoids satisfying $\mathscr{R}=\mathscr{H}$ with the semidirect product of the pseudovariety of all finite groups and the pseudovariety of all finite $\mathscr{R}$-trivial monoids.
Keywords: finite monoids, Green’s relations, monoid representation, monoid pseudovariety, upper-triangular matrices.
@article{TIMM_2013_19_4_a18,
     author = {T. V. Pervukhina},
     title = {The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {181--191},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/}
}
TY  - JOUR
AU  - T. V. Pervukhina
TI  - The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 181
EP  - 191
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/
LA  - ru
ID  - TIMM_2013_19_4_a18
ER  - 
%0 Journal Article
%A T. V. Pervukhina
%T The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 181-191
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/
%G ru
%F TIMM_2013_19_4_a18
T. V. Pervukhina. The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 181-191. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/

[1] Lallement G., “Regular semigroups with $\mathscr{D}=\mathscr{R}$ as syntactic monoids of finite prefix codes”, Theoretical Computer Science, 3 (1997), 35–49 | DOI | MR

[2] Pastijn F., Volkov M. V., “$\mathscr{D}$-compatible semigroup varieties”, J. Alg., 299 (2006), 62–93 | DOI | MR | Zbl

[3] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR

[4] Rhodes J., Steinberg B., The q-theory of finite semigroups, Springer, Boston, 2009, 666 pp. | MR

[5] Schutzenberger M. P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl

[6] Simon I., “Piecewise testable events”, Proc. 2nd GI Conf., Lect. Notes in Comput. Sci., 33, 1975, 214–222 | DOI | MR | Zbl

[7] Stiffler P., “Extension of the fundamental theorem of finite semigroups”, Advances in Math., 11 (1973), 159–209 | DOI | MR

[8] Straubing H., “On finite $\mathscr{J}$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl

[9] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure and Applied Alg., 48 (1987), 83–198 | DOI | MR | Zbl

[10] Trotter P. G., Volkov M. V., “The finite basis problem in the pseudovariety joins of aperiodic semigroups with groups”, Semigroup Forum, 52 (1996), 83–91 | DOI | MR | Zbl

[11] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.