@article{TIMM_2013_19_4_a18,
author = {T. V. Pervukhina},
title = {The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {181--191},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/}
}
T. V. Pervukhina. The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 181-191. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/
[1] Lallement G., “Regular semigroups with $\mathscr{D}=\mathscr{R}$ as syntactic monoids of finite prefix codes”, Theoretical Computer Science, 3 (1997), 35–49 | DOI | MR
[2] Pastijn F., Volkov M. V., “$\mathscr{D}$-compatible semigroup varieties”, J. Alg., 299 (2006), 62–93 | DOI | MR | Zbl
[3] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR
[4] Rhodes J., Steinberg B., The q-theory of finite semigroups, Springer, Boston, 2009, 666 pp. | MR
[5] Schutzenberger M. P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl
[6] Simon I., “Piecewise testable events”, Proc. 2nd GI Conf., Lect. Notes in Comput. Sci., 33, 1975, 214–222 | DOI | MR | Zbl
[7] Stiffler P., “Extension of the fundamental theorem of finite semigroups”, Advances in Math., 11 (1973), 159–209 | DOI | MR
[8] Straubing H., “On finite $\mathscr{J}$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl
[9] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure and Applied Alg., 48 (1987), 83–198 | DOI | MR | Zbl
[10] Trotter P. G., Volkov M. V., “The finite basis problem in the pseudovariety joins of aperiodic semigroups with groups”, Semigroup Forum, 52 (1996), 83–91 | DOI | MR | Zbl
[11] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.