The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 181-191

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any finite monoid $S$ on which Green's relations $\mathscr{R}$ and $\mathscr{H}$ coincide divides the monoid of all upper-triangular row-monomial matrices over a finite group. The proof is constructive; given the monoid $S$, the corresponding group and the order of matrices can be effectively found. The obtained result is used to identify the pseudovariety generated by all finite monoids satisfying $\mathscr{R}=\mathscr{H}$ with the semidirect product of the pseudovariety of all finite groups and the pseudovariety of all finite $\mathscr{R}$-trivial monoids.
Keywords: finite monoids, Green’s relations, monoid representation, monoid pseudovariety, upper-triangular matrices.
@article{TIMM_2013_19_4_a18,
     author = {T. V. Pervukhina},
     title = {The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/}
}
TY  - JOUR
AU  - T. V. Pervukhina
TI  - The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 181
EP  - 191
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/
LA  - ru
ID  - TIMM_2013_19_4_a18
ER  - 
%0 Journal Article
%A T. V. Pervukhina
%T The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 181-191
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/
%G ru
%F TIMM_2013_19_4_a18
T. V. Pervukhina. The structure of finite monoids satisfying the relation $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 181-191. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a18/