Exceptional strongly regular graphs with eigenvalue~3
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A strongly regular graph $\Gamma$ with eigenvalue $m-1$ is called exceptional if it does not belong to the following list: (1) the union of isolated $m$-cliques, (2) a pseudogeometric graph for $pG_t(t+m-1,t)$, (3) the completion to a pseudogeometric graph for $pG_{m}(s,m-1)$, (4) a graph in the half case with parameters $(4\mu+1,2\mu,\mu-1,\mu)$, $\sqrt{4\mu+1}=m-1$. We find parameters of exceptional strongly regular graphs with nonleading eigenvalue 3.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
strongly regular graph, eigenvalue of a graph.
                    
                  
                
                
                @article{TIMM_2013_19_4_a16,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Exceptional strongly regular graphs with eigenvalue~3},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--174},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/}
}
                      
                      
                    TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - Exceptional strongly regular graphs with eigenvalue~3 JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 167 EP - 174 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/ LA - ru ID - TIMM_2013_19_4_a16 ER -
A. A. Makhnev; D. V. Paduchikh. Exceptional strongly regular graphs with eigenvalue~3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
