@article{TIMM_2013_19_4_a16,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {Exceptional strongly regular graphs with eigenvalue~3},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {167--174},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/}
}
A. A. Makhnev; D. V. Paduchikh. Exceptional strongly regular graphs with eigenvalue 3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
[1] Koolen J., Yu H., “The distance-regular graphs such that all of its second largest local eigenvalues are at most one”, Linear Algebra Appl., 435:10 (2011), 2507–2579 | DOI | MR
[2] Kardanova M. L., Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya grafami, dopolnitelnymi k grafu Zeidelya”, Dokl. AN, 434:4 (2010), 447–449 | Zbl
[3] Belousov I. N., Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny s sobstvennym znacheniem 2”, Dokl. AN, 447:5 (2012), 475–478 | Zbl
[4] Makhnev A. A., “O silno regulyarnykh grafakh s sobstvennym znacheniem 3 i ikh rasshireniyakh”, Dokl. AN, 451:5 (2013), 475–478
[5] Kabanov V. V., Makhnev A. A., Paduchikh D. V., Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 105–116
[6] Neumaier A., “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33:4 (1979), 392–400 | DOI | MR
[7] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issled. operatsii, 3:3 (1995), 71–83 | Zbl
[8] Brouwer A. E., Haemers W. H., Spectra of graphs, Springer-Verlag, N. Y. etc., 2011, 250 pp. | MR