Exceptional strongly regular graphs with eigenvalue 3
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A strongly regular graph $\Gamma$ with eigenvalue $m-1$ is called exceptional if it does not belong to the following list: (1) the union of isolated $m$-cliques, (2) a pseudogeometric graph for $pG_t(t+m-1,t)$, (3) the completion to a pseudogeometric graph for $pG_{m}(s,m-1)$, (4) a graph in the half case with parameters $(4\mu+1,2\mu,\mu-1,\mu)$, $\sqrt{4\mu+1}=m-1$. We find parameters of exceptional strongly regular graphs with nonleading eigenvalue 3.
Keywords: strongly regular graph, eigenvalue of a graph.
@article{TIMM_2013_19_4_a16,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Exceptional strongly regular graphs with eigenvalue~3},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--174},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Exceptional strongly regular graphs with eigenvalue 3
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 167
EP  - 174
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
LA  - ru
ID  - TIMM_2013_19_4_a16
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Exceptional strongly regular graphs with eigenvalue 3
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 167-174
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
%G ru
%F TIMM_2013_19_4_a16
A. A. Makhnev; D. V. Paduchikh. Exceptional strongly regular graphs with eigenvalue 3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/

[1] Koolen J., Yu H., “The distance-regular graphs such that all of its second largest local eigenvalues are at most one”, Linear Algebra Appl., 435:10 (2011), 2507–2579 | DOI | MR

[2] Kardanova M. L., Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya grafami, dopolnitelnymi k grafu Zeidelya”, Dokl. AN, 434:4 (2010), 447–449 | Zbl

[3] Belousov I. N., Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny s sobstvennym znacheniem 2”, Dokl. AN, 447:5 (2012), 475–478 | Zbl

[4] Makhnev A. A., “O silno regulyarnykh grafakh s sobstvennym znacheniem 3 i ikh rasshireniyakh”, Dokl. AN, 451:5 (2013), 475–478

[5] Kabanov V. V., Makhnev A. A., Paduchikh D. V., Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 105–116

[6] Neumaier A., “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33:4 (1979), 392–400 | DOI | MR

[7] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issled. operatsii, 3:3 (1995), 71–83 | Zbl

[8] Brouwer A. E., Haemers W. H., Spectra of graphs, Springer-Verlag, N. Y. etc., 2011, 250 pp. | MR