Exceptional strongly regular graphs with eigenvalue~3
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174

Voir la notice de l'article provenant de la source Math-Net.Ru

A strongly regular graph $\Gamma$ with eigenvalue $m-1$ is called exceptional if it does not belong to the following list: (1) the union of isolated $m$-cliques, (2) a pseudogeometric graph for $pG_t(t+m-1,t)$, (3) the completion to a pseudogeometric graph for $pG_{m}(s,m-1)$, (4) a graph in the half case with parameters $(4\mu+1,2\mu,\mu-1,\mu)$, $\sqrt{4\mu+1}=m-1$. We find parameters of exceptional strongly regular graphs with nonleading eigenvalue 3.
Keywords: strongly regular graph, eigenvalue of a graph.
@article{TIMM_2013_19_4_a16,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Exceptional strongly regular graphs with eigenvalue~3},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--174},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Exceptional strongly regular graphs with eigenvalue~3
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 167
EP  - 174
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
LA  - ru
ID  - TIMM_2013_19_4_a16
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Exceptional strongly regular graphs with eigenvalue~3
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 167-174
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/
%G ru
%F TIMM_2013_19_4_a16
A. A. Makhnev; D. V. Paduchikh. Exceptional strongly regular graphs with eigenvalue~3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 167-174. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a16/