On nonabelian composition factors of a finite group that is prime spectrum minimal
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 155-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that $L$ is a finite group, $\pi(L)$ is the set of prime divisors of the order $|L|$, and $\mathfrak{Y}$ is the class of finite groups $G$ such that $\pi(G) \not = \pi(H)$ for any proper subgroup $H$ of $G$. Groups from the class $\mathfrak{Y}$ will be called prime spectrum minimal. Many but not all finite simple groups are prime spectrum minimal. For finite simple groups not from the class $\mathfrak{Y}$, the question whether they are isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ is interesting. We describe some finite simple groups that are not isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ and construct an example of a finite group from $\mathfrak{Y}$ that has as its composition factor a finite simple sporadic McLaughlin group $McL$ not from the class $\mathfrak{Y}$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, prime spectrum, minimal group, maximal subgroup, composition factor.
                    
                  
                
                
                @article{TIMM_2013_19_4_a15,
     author = {N. V. Maslova and D. O. Revin},
     title = {On nonabelian composition factors of a finite group that is prime spectrum minimal},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/}
}
                      
                      
                    TY - JOUR AU - N. V. Maslova AU - D. O. Revin TI - On nonabelian composition factors of a finite group that is prime spectrum minimal JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 155 EP - 166 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/ LA - ru ID - TIMM_2013_19_4_a15 ER -
%0 Journal Article %A N. V. Maslova %A D. O. Revin %T On nonabelian composition factors of a finite group that is prime spectrum minimal %J Trudy Instituta matematiki i mehaniki %D 2013 %P 155-166 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/ %G ru %F TIMM_2013_19_4_a15
N. V. Maslova; D. O. Revin. On nonabelian composition factors of a finite group that is prime spectrum minimal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 155-166. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/
