On nonabelian composition factors of a finite group that is prime spectrum minimal
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 155-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $L$ is a finite group, $\pi(L)$ is the set of prime divisors of the order $|L|$, and $\mathfrak{Y}$ is the class of finite groups $G$ such that $\pi(G) \not = \pi(H)$ for any proper subgroup $H$ of $G$. Groups from the class $\mathfrak{Y}$ will be called prime spectrum minimal. Many but not all finite simple groups are prime spectrum minimal. For finite simple groups not from the class $\mathfrak{Y}$, the question whether they are isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ is interesting. We describe some finite simple groups that are not isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ and construct an example of a finite group from $\mathfrak{Y}$ that has as its composition factor a finite simple sporadic McLaughlin group $McL$ not from the class $\mathfrak{Y}$.
Keywords: finite group, prime spectrum, minimal group, maximal subgroup, composition factor.
@article{TIMM_2013_19_4_a15,
     author = {N. V. Maslova and D. O. Revin},
     title = {On nonabelian composition factors of a finite group that is prime spectrum minimal},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - On nonabelian composition factors of a finite group that is prime spectrum minimal
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 155
EP  - 166
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/
LA  - ru
ID  - TIMM_2013_19_4_a15
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. O. Revin
%T On nonabelian composition factors of a finite group that is prime spectrum minimal
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 155-166
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/
%G ru
%F TIMM_2013_19_4_a15
N. V. Maslova; D. O. Revin. On nonabelian composition factors of a finite group that is prime spectrum minimal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 155-166. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a15/