Dynamic programming in a problem of rearranging single-type objects
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 125-130
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of optimizing travels over a nonhomogeneous region in the process of rearranging $n$ single-type objects to $n$ new positions. We discuss possible applications of this problem, obtain a dynamic programming method for the construction of an optimal route combining the collection and placement of objects, and carry out a numerical experiment on a model segment of a map.
Keywords:
rearrangement of objects, dynamic programming, traveling salesman problem.
@article{TIMM_2013_19_4_a12,
author = {E. E. Ivanko},
title = {Dynamic programming in a problem of rearranging single-type objects},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {125--130},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a12/}
}
E. E. Ivanko. Dynamic programming in a problem of rearranging single-type objects. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 125-130. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a12/
[1] Bronshtein E. M., Gindullin R. V., “Ob odnom klasse zadach marshrutizatsii”, Mat. modelirovanie, 23:6 (2011), 123–132
[2] Bellman R., “Dynamic programming treatment of the travelling salesman problem”, J. Assoc. Comput. Mach., 1962, no. 9, 61–63 | DOI | MR | Zbl
[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 9, 3–33
[4] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs RKhD, M.–Izhevsk, 2008, 240 pp.
[5] Held M., Karp R. M., “A dynamic programming approach to sequencing problems”, J. Soc. Indust. Appl. Math., 10:1 (1962), 196–210 | DOI | MR | Zbl