Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 119-124
Cet article a éte moissonné depuis la source Math-Net.Ru
A stationary system of Navier-Stokes equations is considered on a Riemannian manifold diffeomorphic to a two-dimensional sphere. This problem can be used as a model for meteorological processes in planetary atmospheres. An asymptotic series in the viscosity parameter is constructed for a generalized solution under a constraint on the Reynolds number that guarantees the existence and uniqueness of the solution. We prove that partial sums of the series approximate the exact solution in a norm equivalent to the norm of the Sobolev space.
Keywords:
Navier–Stokes system, generalized solution, Riemannian manifold.
@article{TIMM_2013_19_4_a11,
author = {S. V. Zakharov},
title = {Asymptotics of a generalized solution of the stationary {Navier-Stokes} system on a manifold diffeomorphic to a sphere},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {119--124},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a11/}
}
TY - JOUR AU - S. V. Zakharov TI - Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 119 EP - 124 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a11/ LA - ru ID - TIMM_2013_19_4_a11 ER -
%0 Journal Article %A S. V. Zakharov %T Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere %J Trudy Instituta matematiki i mehaniki %D 2013 %P 119-124 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a11/ %G ru %F TIMM_2013_19_4_a11
S. V. Zakharov. Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 119-124. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a11/
[1] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987, 287 pp.
[2] Ilin A. A., “Uravneniya Nave–Stoksa i Eilera na dvumernykh zamknutykh mnogoobraziyakh”, Mat. sb., 181:4 (1990), 521–539 | Zbl
[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961, 204 pp.
[4] Zakharov S. V., “Regulyarnaya asimptotika obobschennogo resheniya statsionarnoi sistemy Nave–Stoksa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 108–113
[5] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.