Asymptotics of regularized solutions of an ill-posed Cauchy problem for an autonomous linear system of differential equations with commensurable delays
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 107-118
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an autonomous linear system of differential equations with commensurable delays, asymptotic formulas are found that describe the analytic dependences of regularized solutions of the system on the regularization parameter. The problem is solved under the requirement that the initial function is sufficiently smooth but with the violation of the conditions that guarantee the continuous extension of solution in the direction of decreasing time.
Keywords: differential equations with delay, ill-posed problem, asymptotic methods.
@article{TIMM_2013_19_4_a10,
     author = {Yu. F. Dolgii and P. G. Surkov},
     title = {Asymptotics of regularized solutions of an ill-posed {Cauchy} problem for an autonomous linear system of differential equations with commensurable delays},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {107--118},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a10/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - P. G. Surkov
TI  - Asymptotics of regularized solutions of an ill-posed Cauchy problem for an autonomous linear system of differential equations with commensurable delays
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 107
EP  - 118
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a10/
LA  - ru
ID  - TIMM_2013_19_4_a10
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A P. G. Surkov
%T Asymptotics of regularized solutions of an ill-posed Cauchy problem for an autonomous linear system of differential equations with commensurable delays
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 107-118
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a10/
%G ru
%F TIMM_2013_19_4_a10
Yu. F. Dolgii; P. G. Surkov. Asymptotics of regularized solutions of an ill-posed Cauchy problem for an autonomous linear system of differential equations with commensurable delays. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 107-118. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a10/

[1] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp.

[2] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp.

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp.

[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp.

[5] Dolgii Yu. F., “Kharakteristicheskoe uravnenie v zadache asimptoticheskoi ustoichivosti periodicheskoi sistemy s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, 2005, 85–96 | MR

[6] Gomoyunov M. I., Lukoyanov N. Yu., “Optimizatsiya garantii v funktsionalno-differentsialnykh sistemakh s posledeistviem po upravleniyu”, Prikl. matematika i mekhanika, 76:1 (2012), 515–525 | MR

[7] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp.

[8] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[9] Dolgii Yu. F., Surkov P. G., “Asimptotika regulyarizovannykh reshenii lineinoi avtonomnoi sistemy differentsialnykh uravnenii s zapazdyvaniem”, sb. nauch. tr. fak. VMiK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 2, 2007, 71–99 | Zbl

[10] Dolgii Yu. F., Surkov P. G., “Asimptotika regulyarizovannykh reshenii lineinoi neavtonomnoi sistemy differentsialnykh uravnenii s operezheniem”, Differents. uravneniya, 46:4 (2010), 467–485 | MR | Zbl

[11] Dolgii Yu. F., Surkov P. G., “Nekorrektnaya zadacha vosstanovleniya chislennosti populyatsii v matematicheskoi modeli Khatchinsona”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 70–84

[12] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954, 292 pp.

[13] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp.

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 576 pp.