@article{TIMM_2013_19_3_a9,
author = {A. R. Danilin and N. S. Korobitsyna},
title = {Asymptotic estimates for a~solution of a~singular perturbation optimal control problem on a~closed interval under geometric constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {104--112},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/}
}
TY - JOUR AU - A. R. Danilin AU - N. S. Korobitsyna TI - Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 104 EP - 112 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/ LA - ru ID - TIMM_2013_19_3_a9 ER -
%0 Journal Article %A A. R. Danilin %A N. S. Korobitsyna %T Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints %J Trudy Instituta matematiki i mehaniki %D 2013 %P 104-112 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/ %G ru %F TIMM_2013_19_3_a9
A. R. Danilin; N. S. Korobitsyna. Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 104-112. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972, 441 pp. | MR | Zbl
[5] Kapustyan V. E., “Asimptotika ogranichennykh upravleniya v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Matematika. Estestvoznanie. Tekhnicheskie nauki., 1992, no. 2, 70–74 | MR
[6] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya s geometricheskimi ogranicheniyami na upravlenie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9, no. 1, 2003, 71–78
[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[8] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl
[9] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi granichnogo optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107
[10] Krasovskii A. N., Reshetov V. M., “Zadacha sblizheniya–ukloneniya v sistemakh s malym parametrom pri proizvodnykh”, Prikl. matematika i mekhanika, 38:5 (1974), 771–779 | MR
[11] Subbotina N. N., “Asimptotika singulyarno vozmuschennykh uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 63:2 (1999), 220–230 | MR | Zbl
[12] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl
[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR
[14] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR | Zbl
[15] Chang K., Khaus F., Nelineinye singulyarno vozmuschennye kraevye zadachi, Mir, M., 1988, 247 pp. | MR