Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 104-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem is considered for solutions of a boundary value problem for a second-order ordinary differential equation on a closed interval with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. General theorems on approximation are obtained. Two leading terms of an asymptotic expansion of the solution are constructed and an error estimate is obtained for these approximations.
Keywords: optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2013_19_3_a9,
     author = {A. R. Danilin and N. S. Korobitsyna},
     title = {Asymptotic estimates for a~solution of a~singular perturbation optimal control problem on a~closed interval under geometric constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {104--112},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - N. S. Korobitsyna
TI  - Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 104
EP  - 112
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/
LA  - ru
ID  - TIMM_2013_19_3_a9
ER  - 
%0 Journal Article
%A A. R. Danilin
%A N. S. Korobitsyna
%T Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 104-112
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/
%G ru
%F TIMM_2013_19_3_a9
A. R. Danilin; N. S. Korobitsyna. Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 104-112. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a9/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972, 441 pp. | MR | Zbl

[5] Kapustyan V. E., “Asimptotika ogranichennykh upravleniya v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Matematika. Estestvoznanie. Tekhnicheskie nauki., 1992, no. 2, 70–74 | MR

[6] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya s geometricheskimi ogranicheniyami na upravlenie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9, no. 1, 2003, 71–78

[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[8] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl

[9] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi granichnogo optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107

[10] Krasovskii A. N., Reshetov V. M., “Zadacha sblizheniya–ukloneniya v sistemakh s malym parametrom pri proizvodnykh”, Prikl. matematika i mekhanika, 38:5 (1974), 771–779 | MR

[11] Subbotina N. N., “Asimptotika singulyarno vozmuschennykh uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 63:2 (1999), 220–230 | MR | Zbl

[12] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl

[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR

[14] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR | Zbl

[15] Chang K., Khaus F., Nelineinye singulyarno vozmuschennye kraevye zadachi, Mir, M., 1988, 247 pp. | MR