Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 83-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an arbitrary Tychonoff space $X$, we describe closed ideals and closed congruences of the topological semiring $C_p(X,\mathbf I)$ of all continuous functions on $X$ with values in the closed unit interval $\mathbf I$ considered in the topology of pointwise convergence. The duality between the category of Tychonoff spaces $X$ with continuous mappings and the category of topological semirings $C_p(X,\mathbf I)$ with continuous homomorphisms preserving constants is established.
Keywords: semiring, continuous function, Tychonoff topology, closed ideal, closed congruence, duality.
@article{TIMM_2013_19_3_a7,
     author = {E. M. Vechtomov and E. N. Lubyagina},
     title = {Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--93},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a7/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - E. N. Lubyagina
TI  - Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 83
EP  - 93
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a7/
LA  - ru
ID  - TIMM_2013_19_3_a7
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A E. N. Lubyagina
%T Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 83-93
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a7/
%G ru
%F TIMM_2013_19_3_a7
E. M. Vechtomov; E. N. Lubyagina. Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 83-93. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a7/

[1] Burbaki N., Obschaya topologiya. Topologicheskie gruppy, chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR

[2] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975, 408 pp.

[3] Varankina V. I., Vechtomov E. M., Semenova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. matematika, 4:2 (1998), 493–510 | MR | Zbl

[4] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 28, VINITI, 1990, 3–46 | MR | Zbl

[5] Vechtomov E. M., Lubyagina E. N., “O prostykh idealakh polukolets nepreryvnykh funktsii so znacheniyami v edinichnom otrezke”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 12–18

[6] Vechtomov E. M., Lubyagina E. N., “Reshetki nepreryvnykh funktsii so znacheniyami v edinichnom otrezke”, Vest. Syktyvkar. un-ta. Matematika. Mekhanika. Informatika, 2011, no. 14, 3–20

[7] Vechtomov E. M., Lubyagina E. N., “Opredelyaemost kompaktov reshetkami idealov i kongruentsii polukolets nepreryvnykh $[0, 1]$-znachnykh funktsii na nikh”, Izv. vuzov. Matematika, 2012, no. 1, 87–91 | MR | Zbl

[8] Vechtomov E. M., Lubyagina E. N., “O polukoltsakh $sc$-funktsii”, Vest. Syktyvkar. un-ta. Matematika. Mekhanika. Informatika, 2012, no. 15, 73–82

[9] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR

[10] Lubyagina E. N., “Zamknutye idealy i zamknutye kongruentsii polukolets $C_p(X,\mathbf I)$”, Sovremennye problemy matematiki, Tez. Mezhdunar. (43-i Vseros.) mol. shk.-konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2012, 55–57

[11] Podlevskikh M. N., “Zamknutye kongruentsii na polukoltsakh nepreryvnykh funktsii”, Fundament. i prikl. matematika, 5:3 (1999), 947–952 | MR | Zbl

[12] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[13] Gillman L., Jerison M., Rings of Continuous Functions, Reprint of the 1960 edition, Graduate Texts in Mathematics, 43, Springer-Verlag, Berlin, 1976, 300 pp. | MR | Zbl

[14] Golan J. S., Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999, 381 pp. | MR

[15] Nagata J., “On lettices of functions on topological spaces and of functions on uniform spaces”, Osaka Math. J., 1 (1949), 166–181 | MR | Zbl