Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 71-82
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe finite simple nonabelian groups in which every maximal subgroup is a solvable or Hall subgroup. We also describe nonabelian composition factors of a finite nonsolvable group with these properties.
Keywords: finite group, nonabelian composition factor, maximal subgroup, Hall subgroup, solvable subgroup.
Mots-clés : solvable group, nonsolvable group
@article{TIMM_2013_19_3_a6,
     author = {V. A. Vedernikov},
     title = {Finite groups in which every nonsolvable maximal subgroup is {a~Hall} subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--82},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a6/}
}
TY  - JOUR
AU  - V. A. Vedernikov
TI  - Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 71
EP  - 82
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a6/
LA  - ru
ID  - TIMM_2013_19_3_a6
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%T Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 71-82
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a6/
%G ru
%F TIMM_2013_19_3_a6
V. A. Vedernikov. Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 71-82. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a6/

[1] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp tipa $G_2$ i $F_4$”, Algebra i logika, 35:6 (1996), 663–684 | MR

[2] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp tipa $E_6,$ $E_7$ i $E_8$”, Algebra i logika, 36:5 (1997), 518–530 | MR

[3] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp skruchennogo tipa”, Algebra i logika, 37:1 (1998), 17–35 | MR

[4] Vasilev A. V., Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh ortogonalnykh grupp”, Algebra i logika, 33:6 (1994), 603–627 | MR

[5] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, Moskva, 1985, 352 pp. | MR | Zbl

[6] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR | Zbl

[7] Kondratev A. S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.

[8] Levchuk V. M., Nuzhin Ya. N., “O stroenii grupp Ri”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl

[9] Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh klassicheskikh grupp. Spetsialnye, lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl

[10] Maslova N. V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. mat. zhurn., 53:5 (2012), 1065–1076 | MR | Zbl

[11] Maslova N. V., Revin D. O., “Konechnye gruppy, vse maksimalnye podgruppy kotorykh khollovy”, Mat. trudy, 15:2 (2012), 105–126 | MR

[12] Monakhov V. S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Mat. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl

[13] Revin D. O., “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Mat. trudy, 2:1 (1999), 160–208 | MR | Zbl

[14] Steinberg R., Lektsii o gruppakh Shevalle, Mir, Moskva, 1976, 262 pp. | MR

[15] Tikhonenko T. V., Tyutyanov V. N., “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 2008, no. 5(50), 198–206

[16] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[17] Carter R. W., Simple groups of Lie type, John Wiley and Sons, London, 1972, 331 pp. | MR | Zbl

[18] Cooperstein B. N., “Maxsimal subgroups of $G_2(2^n)$”, J. Algebra, 70:1 (1981), 23–36 | DOI | MR | Zbl

[19] Kleidman P. B., “The maximal subgroups of Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups $^2G_2(q)$, and their automorphism groups”, J. Algebra, 117:1 (1988), 30–71 | DOI | MR | Zbl

[20] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge Univ. Press, Cambridge, 1990, 303 pp. | MR | Zbl

[21] Liebeck M. W., Praeger C., Saxl J., “A classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111:2 (1987), 365–383 | DOI | MR | Zbl

[22] Mitchel H. H., “Determination of the ordinary and modular ternary liner groups”, Trans. Amer. Math. Soc., 12:2 (1911), 207–242 | DOI | MR | Zbl

[23] Ree R., “A family of simple groups associated with the simple Lie algebra of type $(G_2)$”, Am. J. Math., 83:3 (1961), 432–462 | DOI | MR | Zbl

[24] Ree R., “A family of simple groups associated with the simple Lie algebra of type $(F_4)$”, Am. J. Math., 83:3 (1961), 401–420 | DOI | MR | Zbl

[25] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[26] Thompson J. G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl